885 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			885 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|   | //  Copyright John Maddock 2007. | ||
|  | //  Use, modification and distribution are subject to the | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_NTL_RR_HPP | ||
|  | #define BOOST_MATH_NTL_RR_HPP | ||
|  | 
 | ||
|  | #include <boost/config.hpp> | ||
|  | #include <boost/limits.hpp> | ||
|  | #include <boost/math/tools/real_cast.hpp> | ||
|  | #include <boost/math/tools/precision.hpp> | ||
|  | #include <boost/math/constants/constants.hpp> | ||
|  | #include <boost/math/tools/roots.hpp> | ||
|  | #include <boost/math/special_functions/fpclassify.hpp> | ||
|  | #include <boost/math/bindings/detail/big_digamma.hpp> | ||
|  | #include <boost/math/bindings/detail/big_lanczos.hpp> | ||
|  | 
 | ||
|  | #include <ostream> | ||
|  | #include <istream> | ||
|  | #include <boost/config/no_tr1/cmath.hpp> | ||
|  | #include <NTL/RR.h> | ||
|  | 
 | ||
|  | namespace boost{ namespace math{ | ||
|  | 
 | ||
|  | namespace ntl | ||
|  | { | ||
|  | 
 | ||
|  | class RR; | ||
|  | 
 | ||
|  | RR ldexp(RR r, int exp); | ||
|  | RR frexp(RR r, int* exp); | ||
|  | 
 | ||
|  | class RR | ||
|  | { | ||
|  | public: | ||
|  |    // Constructors: | ||
|  |    RR() {} | ||
|  |    RR(const ::NTL::RR& c) : m_value(c){} | ||
|  |    RR(char c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  | #ifndef BOOST_NO_INTRINSIC_WCHAR_T | ||
|  |    RR(wchar_t c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  | #endif | ||
|  |    RR(unsigned char c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(signed char c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(unsigned short c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(short c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(unsigned int c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  |    RR(int c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  |    RR(unsigned long c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  |    RR(long c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  |    RR(boost::ulong_long_type c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  |    RR(boost::long_long_type c) | ||
|  |    { | ||
|  |       assign_large_int(c); | ||
|  |    } | ||
|  | #endif | ||
|  |    RR(float c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(double c) | ||
|  |    { | ||
|  |       m_value = c; | ||
|  |    } | ||
|  |    RR(long double c) | ||
|  |    { | ||
|  |       assign_large_real(c); | ||
|  |    } | ||
|  | 
 | ||
|  |    // Assignment: | ||
|  |    RR& operator=(char c) { m_value = c; return *this; } | ||
|  |    RR& operator=(unsigned char c) { m_value = c; return *this; } | ||
|  |    RR& operator=(signed char c) { m_value = c; return *this; } | ||
|  | #ifndef BOOST_NO_INTRINSIC_WCHAR_T | ||
|  |    RR& operator=(wchar_t c) { m_value = c; return *this; } | ||
|  | #endif | ||
|  |    RR& operator=(short c) { m_value = c; return *this; } | ||
|  |    RR& operator=(unsigned short c) { m_value = c; return *this; } | ||
|  |    RR& operator=(int c) { assign_large_int(c); return *this; } | ||
|  |    RR& operator=(unsigned int c) { assign_large_int(c); return *this; } | ||
|  |    RR& operator=(long c) { assign_large_int(c); return *this; } | ||
|  |    RR& operator=(unsigned long c) { assign_large_int(c); return *this; } | ||
|  | #ifdef BOOST_HAS_LONG_LONG | ||
|  |    RR& operator=(boost::long_long_type c) { assign_large_int(c); return *this; } | ||
|  |    RR& operator=(boost::ulong_long_type c) { assign_large_int(c); return *this; } | ||
|  | #endif | ||
|  |    RR& operator=(float c) { m_value = c; return *this; } | ||
|  |    RR& operator=(double c) { m_value = c; return *this; } | ||
|  |    RR& operator=(long double c) { assign_large_real(c); return *this; } | ||
|  | 
 | ||
|  |    // Access: | ||
|  |    NTL::RR& value(){ return m_value; } | ||
|  |    NTL::RR const& value()const{ return m_value; } | ||
|  | 
 | ||
|  |    // Member arithmetic: | ||
|  |    RR& operator+=(const RR& other) | ||
|  |    { m_value += other.value(); return *this; } | ||
|  |    RR& operator-=(const RR& other) | ||
|  |    { m_value -= other.value(); return *this; } | ||
|  |    RR& operator*=(const RR& other) | ||
|  |    { m_value *= other.value(); return *this; } | ||
|  |    RR& operator/=(const RR& other) | ||
|  |    { m_value /= other.value(); return *this; } | ||
|  |    RR operator-()const | ||
|  |    { return -m_value; } | ||
|  |    RR const& operator+()const | ||
|  |    { return *this; } | ||
|  | 
 | ||
|  |    // RR compatibity: | ||
|  |    const ::NTL::ZZ& mantissa() const | ||
|  |    { return m_value.mantissa(); } | ||
|  |    long exponent() const | ||
|  |    { return m_value.exponent(); } | ||
|  | 
 | ||
|  |    static void SetPrecision(long p) | ||
|  |    { ::NTL::RR::SetPrecision(p); } | ||
|  | 
 | ||
|  |    static long precision() | ||
|  |    { return ::NTL::RR::precision(); } | ||
|  | 
 | ||
|  |    static void SetOutputPrecision(long p) | ||
|  |    { ::NTL::RR::SetOutputPrecision(p); } | ||
|  |    static long OutputPrecision() | ||
|  |    { return ::NTL::RR::OutputPrecision(); } | ||
|  | 
 | ||
|  | 
 | ||
|  | private: | ||
|  |    ::NTL::RR m_value; | ||
|  | 
 | ||
|  |    template <class V> | ||
|  |    void assign_large_real(const V& a) | ||
|  |    { | ||
|  |       using std::frexp; | ||
|  |       using std::ldexp; | ||
|  |       using std::floor; | ||
|  |       if (a == 0) { | ||
|  |          clear(m_value); | ||
|  |          return; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (a == 1) { | ||
|  |          NTL::set(m_value); | ||
|  |          return; | ||
|  |       } | ||
|  | 
 | ||
|  |       if (!(boost::math::isfinite)(a)) | ||
|  |       { | ||
|  |          throw std::overflow_error("Cannot construct an instance of NTL::RR with an infinite value."); | ||
|  |       } | ||
|  | 
 | ||
|  |       int e; | ||
|  |       long double f, term; | ||
|  |       ::NTL::RR t; | ||
|  |       clear(m_value); | ||
|  | 
 | ||
|  |       f = frexp(a, &e); | ||
|  | 
 | ||
|  |       while(f) | ||
|  |       { | ||
|  |          // extract 30 bits from f: | ||
|  |          f = ldexp(f, 30); | ||
|  |          term = floor(f); | ||
|  |          e -= 30; | ||
|  |          conv(t.x, (int)term); | ||
|  |          t.e = e; | ||
|  |          m_value += t; | ||
|  |          f -= term; | ||
|  |       } | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class V> | ||
|  |    void assign_large_int(V a) | ||
|  |    { | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(push) | ||
|  | #pragma warning(disable:4146) | ||
|  | #endif | ||
|  |       clear(m_value); | ||
|  |       int exp = 0; | ||
|  |       NTL::RR t; | ||
|  |       bool neg = a < V(0) ? true : false; | ||
|  |       if(neg)  | ||
|  |          a = -a; | ||
|  |       while(a) | ||
|  |       { | ||
|  |          t = static_cast<double>(a & 0xffff); | ||
|  |          m_value += ldexp(RR(t), exp).value(); | ||
|  |          a >>= 16; | ||
|  |          exp += 16; | ||
|  |       } | ||
|  |       if(neg) | ||
|  |          m_value = -m_value; | ||
|  | #ifdef BOOST_MSVC | ||
|  | #pragma warning(pop) | ||
|  | #endif | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | // Non-member arithmetic: | ||
|  | inline RR operator+(const RR& a, const RR& b) | ||
|  | { | ||
|  |    RR result(a); | ||
|  |    result += b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline RR operator-(const RR& a, const RR& b) | ||
|  | { | ||
|  |    RR result(a); | ||
|  |    result -= b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline RR operator*(const RR& a, const RR& b) | ||
|  | { | ||
|  |    RR result(a); | ||
|  |    result *= b; | ||
|  |    return result; | ||
|  | } | ||
|  | inline RR operator/(const RR& a, const RR& b) | ||
|  | { | ||
|  |    RR result(a); | ||
|  |    result /= b; | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | // Comparison: | ||
|  | inline bool operator == (const RR& a, const RR& b) | ||
|  | { return a.value() == b.value() ? true : false; } | ||
|  | inline bool operator != (const RR& a, const RR& b) | ||
|  | { return a.value() != b.value() ? true : false;} | ||
|  | inline bool operator < (const RR& a, const RR& b) | ||
|  | { return a.value() < b.value() ? true : false; } | ||
|  | inline bool operator <= (const RR& a, const RR& b) | ||
|  | { return a.value() <= b.value() ? true : false; } | ||
|  | inline bool operator > (const RR& a, const RR& b) | ||
|  | { return a.value() > b.value() ? true : false; } | ||
|  | inline bool operator >= (const RR& a, const RR& b) | ||
|  | { return a.value() >= b.value() ? true : false; } | ||
|  | 
 | ||
|  | #if 0 | ||
|  | // Non-member mixed compare: | ||
|  | template <class T> | ||
|  | inline bool operator == (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a == b.value(); | ||
|  | } | ||
|  | template <class T> | ||
|  | inline bool operator != (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a != b.value(); | ||
|  | } | ||
|  | template <class T> | ||
|  | inline bool operator < (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a < b.value(); | ||
|  | } | ||
|  | template <class T> | ||
|  | inline bool operator > (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a > b.value(); | ||
|  | } | ||
|  | template <class T> | ||
|  | inline bool operator <= (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a <= b.value(); | ||
|  | } | ||
|  | template <class T> | ||
|  | inline bool operator >= (const T& a, const RR& b) | ||
|  | { | ||
|  |    return a >= b.value(); | ||
|  | } | ||
|  | #endif  // Non-member mixed compare: | ||
|  | 
 | ||
|  | // Non-member functions: | ||
|  | /* | ||
|  | inline RR acos(RR a) | ||
|  | { return ::NTL::acos(a.value()); } | ||
|  | */ | ||
|  | inline RR cos(RR a) | ||
|  | { return ::NTL::cos(a.value()); } | ||
|  | /* | ||
|  | inline RR asin(RR a) | ||
|  | { return ::NTL::asin(a.value()); } | ||
|  | inline RR atan(RR a) | ||
|  | { return ::NTL::atan(a.value()); } | ||
|  | inline RR atan2(RR a, RR b) | ||
|  | { return ::NTL::atan2(a.value(), b.value()); } | ||
|  | */ | ||
|  | inline RR ceil(RR a) | ||
|  | { return ::NTL::ceil(a.value()); } | ||
|  | /* | ||
|  | inline RR fmod(RR a, RR b) | ||
|  | { return ::NTL::fmod(a.value(), b.value()); } | ||
|  | inline RR cosh(RR a) | ||
|  | { return ::NTL::cosh(a.value()); } | ||
|  | */ | ||
|  | inline RR exp(RR a) | ||
|  | { return ::NTL::exp(a.value()); } | ||
|  | inline RR fabs(RR a) | ||
|  | { return ::NTL::fabs(a.value()); } | ||
|  | inline RR abs(RR a) | ||
|  | { return ::NTL::abs(a.value()); } | ||
|  | inline RR floor(RR a) | ||
|  | { return ::NTL::floor(a.value()); } | ||
|  | /* | ||
|  | inline RR modf(RR a, RR* ipart) | ||
|  | { | ||
|  |    ::NTL::RR ip; | ||
|  |    RR result = modf(a.value(), &ip); | ||
|  |    *ipart = ip; | ||
|  |    return result; | ||
|  | } | ||
|  | inline RR frexp(RR a, int* expon) | ||
|  | { return ::NTL::frexp(a.value(), expon); } | ||
|  | inline RR ldexp(RR a, int expon) | ||
|  | { return ::NTL::ldexp(a.value(), expon); } | ||
|  | */ | ||
|  | inline RR log(RR a) | ||
|  | { return ::NTL::log(a.value()); } | ||
|  | inline RR log10(RR a) | ||
|  | { return ::NTL::log10(a.value()); } | ||
|  | /* | ||
|  | inline RR tan(RR a) | ||
|  | { return ::NTL::tan(a.value()); } | ||
|  | */ | ||
|  | inline RR pow(RR a, RR b) | ||
|  | { return ::NTL::pow(a.value(), b.value()); } | ||
|  | inline RR pow(RR a, int b) | ||
|  | { return ::NTL::power(a.value(), b); } | ||
|  | inline RR sin(RR a) | ||
|  | { return ::NTL::sin(a.value()); } | ||
|  | /* | ||
|  | inline RR sinh(RR a) | ||
|  | { return ::NTL::sinh(a.value()); } | ||
|  | */ | ||
|  | inline RR sqrt(RR a) | ||
|  | { return ::NTL::sqrt(a.value()); } | ||
|  | /* | ||
|  | inline RR tanh(RR a) | ||
|  | { return ::NTL::tanh(a.value()); } | ||
|  | */ | ||
|  |    inline RR pow(const RR& r, long l) | ||
|  |    { | ||
|  |       return ::NTL::power(r.value(), l); | ||
|  |    } | ||
|  |    inline RR tan(const RR& a) | ||
|  |    { | ||
|  |       return sin(a)/cos(a); | ||
|  |    } | ||
|  |    inline RR frexp(RR r, int* exp) | ||
|  |    { | ||
|  |       *exp = r.value().e; | ||
|  |       r.value().e = 0; | ||
|  |       while(r >= 1) | ||
|  |       { | ||
|  |          *exp += 1; | ||
|  |          r.value().e -= 1; | ||
|  |       } | ||
|  |       while(r < 0.5) | ||
|  |       { | ||
|  |          *exp -= 1; | ||
|  |          r.value().e += 1; | ||
|  |       } | ||
|  |       BOOST_ASSERT(r < 1); | ||
|  |       BOOST_ASSERT(r >= 0.5); | ||
|  |       return r; | ||
|  |    } | ||
|  |    inline RR ldexp(RR r, int exp) | ||
|  |    { | ||
|  |       r.value().e += exp; | ||
|  |       return r; | ||
|  |    } | ||
|  | 
 | ||
|  | // Streaming: | ||
|  | template <class charT, class traits> | ||
|  | inline std::basic_ostream<charT, traits>& operator<<(std::basic_ostream<charT, traits>& os, const RR& a) | ||
|  | { | ||
|  |    return os << a.value(); | ||
|  | } | ||
|  | template <class charT, class traits> | ||
|  | inline std::basic_istream<charT, traits>& operator>>(std::basic_istream<charT, traits>& is, RR& a) | ||
|  | { | ||
|  |    ::NTL::RR v; | ||
|  |    is >> v; | ||
|  |    a = v; | ||
|  |    return is; | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace ntl | ||
|  | 
 | ||
|  | namespace lanczos{ | ||
|  | 
 | ||
|  | struct ntl_lanczos | ||
|  | { | ||
|  |    static ntl::RR lanczos_sum(const ntl::RR& z) | ||
|  |    { | ||
|  |       unsigned long p = ntl::RR::precision(); | ||
|  |       if(p <= 72) | ||
|  |          return lanczos13UDT::lanczos_sum(z); | ||
|  |       else if(p <= 120) | ||
|  |          return lanczos22UDT::lanczos_sum(z); | ||
|  |       else if(p <= 170) | ||
|  |          return lanczos31UDT::lanczos_sum(z); | ||
|  |       else //if(p <= 370) approx 100 digit precision: | ||
|  |          return lanczos61UDT::lanczos_sum(z); | ||
|  |    } | ||
|  |    static ntl::RR lanczos_sum_expG_scaled(const ntl::RR& z) | ||
|  |    { | ||
|  |       unsigned long p = ntl::RR::precision(); | ||
|  |       if(p <= 72) | ||
|  |          return lanczos13UDT::lanczos_sum_expG_scaled(z); | ||
|  |       else if(p <= 120) | ||
|  |          return lanczos22UDT::lanczos_sum_expG_scaled(z); | ||
|  |       else if(p <= 170) | ||
|  |          return lanczos31UDT::lanczos_sum_expG_scaled(z); | ||
|  |       else //if(p <= 370) approx 100 digit precision: | ||
|  |          return lanczos61UDT::lanczos_sum_expG_scaled(z); | ||
|  |    } | ||
|  |    static ntl::RR lanczos_sum_near_1(const ntl::RR& z) | ||
|  |    { | ||
|  |       unsigned long p = ntl::RR::precision(); | ||
|  |       if(p <= 72) | ||
|  |          return lanczos13UDT::lanczos_sum_near_1(z); | ||
|  |       else if(p <= 120) | ||
|  |          return lanczos22UDT::lanczos_sum_near_1(z); | ||
|  |       else if(p <= 170) | ||
|  |          return lanczos31UDT::lanczos_sum_near_1(z); | ||
|  |       else //if(p <= 370) approx 100 digit precision: | ||
|  |          return lanczos61UDT::lanczos_sum_near_1(z); | ||
|  |    } | ||
|  |    static ntl::RR lanczos_sum_near_2(const ntl::RR& z) | ||
|  |    { | ||
|  |       unsigned long p = ntl::RR::precision(); | ||
|  |       if(p <= 72) | ||
|  |          return lanczos13UDT::lanczos_sum_near_2(z); | ||
|  |       else if(p <= 120) | ||
|  |          return lanczos22UDT::lanczos_sum_near_2(z); | ||
|  |       else if(p <= 170) | ||
|  |          return lanczos31UDT::lanczos_sum_near_2(z); | ||
|  |       else //if(p <= 370) approx 100 digit precision: | ||
|  |          return lanczos61UDT::lanczos_sum_near_2(z); | ||
|  |    } | ||
|  |    static ntl::RR g() | ||
|  |    {  | ||
|  |       unsigned long p = ntl::RR::precision(); | ||
|  |       if(p <= 72) | ||
|  |          return lanczos13UDT::g(); | ||
|  |       else if(p <= 120) | ||
|  |          return lanczos22UDT::g(); | ||
|  |       else if(p <= 170) | ||
|  |          return lanczos31UDT::g(); | ||
|  |       else //if(p <= 370) approx 100 digit precision: | ||
|  |          return lanczos61UDT::g(); | ||
|  |    } | ||
|  | }; | ||
|  | 
 | ||
|  | template<class Policy> | ||
|  | struct lanczos<ntl::RR, Policy> | ||
|  | { | ||
|  |    typedef ntl_lanczos type; | ||
|  | }; | ||
|  | 
 | ||
|  | } // namespace lanczos | ||
|  | 
 | ||
|  | namespace tools | ||
|  | { | ||
|  | 
 | ||
|  | template<> | ||
|  | inline int digits<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    return ::NTL::RR::precision(); | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline float real_cast<float, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    double r; | ||
|  |    conv(r, t.value()); | ||
|  |    return static_cast<float>(r); | ||
|  | } | ||
|  | template <> | ||
|  | inline double real_cast<double, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    double r; | ||
|  |    conv(r, t.value()); | ||
|  |    return r; | ||
|  | } | ||
|  | 
 | ||
|  | namespace detail{ | ||
|  | 
 | ||
|  | template<class I> | ||
|  | void convert_to_long_result(NTL::RR const& r, I& result) | ||
|  | { | ||
|  |    result = 0; | ||
|  |    I last_result(0); | ||
|  |    NTL::RR t(r); | ||
|  |    double term; | ||
|  |    do | ||
|  |    { | ||
|  |       conv(term, t); | ||
|  |       last_result = result; | ||
|  |       result += static_cast<I>(term); | ||
|  |       t -= term; | ||
|  |    }while(result != last_result); | ||
|  | } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline long double real_cast<long double, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    long double result(0); | ||
|  |    detail::convert_to_long_result(t.value(), result); | ||
|  |    return result; | ||
|  | } | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR real_cast<boost::math::ntl::RR, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    return t; | ||
|  | } | ||
|  | template <> | ||
|  | inline unsigned real_cast<unsigned, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    unsigned result; | ||
|  |    detail::convert_to_long_result(t.value(), result); | ||
|  |    return result; | ||
|  | } | ||
|  | template <> | ||
|  | inline int real_cast<int, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    int result; | ||
|  |    detail::convert_to_long_result(t.value(), result); | ||
|  |    return result; | ||
|  | } | ||
|  | template <> | ||
|  | inline long real_cast<long, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    long result; | ||
|  |    detail::convert_to_long_result(t.value(), result); | ||
|  |    return result; | ||
|  | } | ||
|  | template <> | ||
|  | inline long long real_cast<long long, boost::math::ntl::RR>(boost::math::ntl::RR t) | ||
|  | { | ||
|  |    long long result; | ||
|  |    detail::convert_to_long_result(t.value(), result); | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    static bool has_init = false; | ||
|  |    static NTL::RR val; | ||
|  |    if(!has_init) | ||
|  |    { | ||
|  |       val = 1; | ||
|  |       val.e = NTL_OVFBND-20; | ||
|  |       has_init = true; | ||
|  |    } | ||
|  |    return val; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    static bool has_init = false; | ||
|  |    static NTL::RR val; | ||
|  |    if(!has_init) | ||
|  |    { | ||
|  |       val = 1; | ||
|  |       val.e = -NTL_OVFBND+20; | ||
|  |       has_init = true; | ||
|  |    } | ||
|  |    return val; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR log_max_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    static bool has_init = false; | ||
|  |    static NTL::RR val; | ||
|  |    if(!has_init) | ||
|  |    { | ||
|  |       val = 1; | ||
|  |       val.e = NTL_OVFBND-20; | ||
|  |       val = log(val); | ||
|  |       has_init = true; | ||
|  |    } | ||
|  |    return val; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR log_min_value<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    static bool has_init = false; | ||
|  |    static NTL::RR val; | ||
|  |    if(!has_init) | ||
|  |    { | ||
|  |       val = 1; | ||
|  |       val.e = -NTL_OVFBND+20; | ||
|  |       val = log(val); | ||
|  |       has_init = true; | ||
|  |    } | ||
|  |    return val; | ||
|  | } | ||
|  | 
 | ||
|  | template <> | ||
|  | inline boost::math::ntl::RR epsilon<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |    return ldexp(boost::math::ntl::RR(1), 1-boost::math::policies::digits<boost::math::ntl::RR, boost::math::policies::policy<> >()); | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace tools | ||
|  | 
 | ||
|  | // | ||
|  | // The number of digits precision in RR can vary with each call | ||
|  | // so we need to recalculate these with each call: | ||
|  | // | ||
|  | namespace constants{ | ||
|  | 
 | ||
|  | template<> inline boost::math::ntl::RR pi<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |     NTL::RR result; | ||
|  |     ComputePi(result); | ||
|  |     return result; | ||
|  | } | ||
|  | template<> inline boost::math::ntl::RR e<boost::math::ntl::RR>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(boost::math::ntl::RR)) | ||
|  | { | ||
|  |     NTL::RR result; | ||
|  |     result = 1; | ||
|  |     return exp(result); | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace constants | ||
|  | 
 | ||
|  | namespace ntl{ | ||
|  |    // | ||
|  |    // These are some fairly brain-dead versions of the math | ||
|  |    // functions that NTL fails to provide. | ||
|  |    // | ||
|  | 
 | ||
|  | 
 | ||
|  |    // | ||
|  |    // Inverse trig functions: | ||
|  |    // | ||
|  |    struct asin_root | ||
|  |    { | ||
|  |       asin_root(RR const& target) : t(target){} | ||
|  | 
 | ||
|  |       boost::math::tuple<RR, RR, RR> operator()(RR const& p) | ||
|  |       { | ||
|  |          RR f0 = sin(p); | ||
|  |          RR f1 = cos(p); | ||
|  |          RR f2 = -f0; | ||
|  |          f0 -= t; | ||
|  |          return boost::math::make_tuple(f0, f1, f2); | ||
|  |       } | ||
|  |    private: | ||
|  |       RR t; | ||
|  |    }; | ||
|  | 
 | ||
|  |    inline RR asin(RR z) | ||
|  |    { | ||
|  |       double r; | ||
|  |       conv(r, z.value()); | ||
|  |       return boost::math::tools::halley_iterate( | ||
|  |          asin_root(z),  | ||
|  |          RR(std::asin(r)),  | ||
|  |          RR(-boost::math::constants::pi<RR>()/2), | ||
|  |          RR(boost::math::constants::pi<RR>()/2), | ||
|  |          NTL::RR::precision()); | ||
|  |    } | ||
|  | 
 | ||
|  |    struct acos_root | ||
|  |    { | ||
|  |       acos_root(RR const& target) : t(target){} | ||
|  | 
 | ||
|  |       boost::math::tuple<RR, RR, RR> operator()(RR const& p) | ||
|  |       { | ||
|  |          RR f0 = cos(p); | ||
|  |          RR f1 = -sin(p); | ||
|  |          RR f2 = -f0; | ||
|  |          f0 -= t; | ||
|  |          return boost::math::make_tuple(f0, f1, f2); | ||
|  |       } | ||
|  |    private: | ||
|  |       RR t; | ||
|  |    }; | ||
|  | 
 | ||
|  |    inline RR acos(RR z) | ||
|  |    { | ||
|  |       double r; | ||
|  |       conv(r, z.value()); | ||
|  |       return boost::math::tools::halley_iterate( | ||
|  |          acos_root(z),  | ||
|  |          RR(std::acos(r)),  | ||
|  |          RR(-boost::math::constants::pi<RR>()/2), | ||
|  |          RR(boost::math::constants::pi<RR>()/2), | ||
|  |          NTL::RR::precision()); | ||
|  |    } | ||
|  | 
 | ||
|  |    struct atan_root | ||
|  |    { | ||
|  |       atan_root(RR const& target) : t(target){} | ||
|  | 
 | ||
|  |       boost::math::tuple<RR, RR, RR> operator()(RR const& p) | ||
|  |       { | ||
|  |          RR c = cos(p); | ||
|  |          RR ta = tan(p); | ||
|  |          RR f0 = ta - t; | ||
|  |          RR f1 = 1 / (c * c); | ||
|  |          RR f2 = 2 * ta / (c * c); | ||
|  |          return boost::math::make_tuple(f0, f1, f2); | ||
|  |       } | ||
|  |    private: | ||
|  |       RR t; | ||
|  |    }; | ||
|  | 
 | ||
|  |    inline RR atan(RR z) | ||
|  |    { | ||
|  |       double r; | ||
|  |       conv(r, z.value()); | ||
|  |       return boost::math::tools::halley_iterate( | ||
|  |          atan_root(z),  | ||
|  |          RR(std::atan(r)),  | ||
|  |          -boost::math::constants::pi<RR>()/2, | ||
|  |          boost::math::constants::pi<RR>()/2, | ||
|  |          NTL::RR::precision()); | ||
|  |    } | ||
|  | 
 | ||
|  |    inline RR atan2(RR y, RR x) | ||
|  |    { | ||
|  |       if(x > 0) | ||
|  |          return atan(y / x); | ||
|  |       if(x < 0) | ||
|  |       { | ||
|  |          return y < 0 ? atan(y / x) - boost::math::constants::pi<RR>() : atan(y / x) + boost::math::constants::pi<RR>(); | ||
|  |       } | ||
|  |       return y < 0 ? -boost::math::constants::half_pi<RR>() : boost::math::constants::half_pi<RR>() ; | ||
|  |    } | ||
|  | 
 | ||
|  |    inline RR sinh(RR z) | ||
|  |    { | ||
|  |       return (expm1(z.value()) - expm1(-z.value())) / 2; | ||
|  |    } | ||
|  | 
 | ||
|  |    inline RR cosh(RR z) | ||
|  |    { | ||
|  |       return (exp(z) + exp(-z)) / 2; | ||
|  |    } | ||
|  | 
 | ||
|  |    inline RR tanh(RR z) | ||
|  |    { | ||
|  |       return sinh(z) / cosh(z); | ||
|  |    } | ||
|  | 
 | ||
|  |    inline RR fmod(RR x, RR y) | ||
|  |    { | ||
|  |       // This is a really crummy version of fmod, we rely on lots | ||
|  |       // of digits to get us out of trouble... | ||
|  |       RR factor = floor(x/y); | ||
|  |       return x - factor * y; | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline int iround(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<int>(round(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline long lround(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<long>(round(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline long long llround(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<long long>(round(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline int itrunc(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<int>(trunc(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline long ltrunc(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<long>(trunc(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  |    template <class Policy> | ||
|  |    inline long long lltrunc(RR const& x, const Policy& pol) | ||
|  |    { | ||
|  |       return tools::real_cast<long long>(trunc(x, pol)); | ||
|  |    } | ||
|  | 
 | ||
|  | } // namespace ntl | ||
|  | 
 | ||
|  | namespace detail{ | ||
|  | 
 | ||
|  | template <class Policy> | ||
|  | ntl::RR digamma_imp(ntl::RR x, const mpl::int_<0>* , const Policy& pol) | ||
|  | { | ||
|  |    // | ||
|  |    // This handles reflection of negative arguments, and all our | ||
|  |    // error handling, then forwards to the T-specific approximation. | ||
|  |    // | ||
|  |    BOOST_MATH_STD_USING // ADL of std functions. | ||
|  | 
 | ||
|  |    ntl::RR result = 0; | ||
|  |    // | ||
|  |    // Check for negative arguments and use reflection: | ||
|  |    // | ||
|  |    if(x < 0) | ||
|  |    { | ||
|  |       // Reflect: | ||
|  |       x = 1 - x; | ||
|  |       // Argument reduction for tan: | ||
|  |       ntl::RR remainder = x - floor(x); | ||
|  |       // Shift to negative if > 0.5: | ||
|  |       if(remainder > 0.5) | ||
|  |       { | ||
|  |          remainder -= 1; | ||
|  |       } | ||
|  |       // | ||
|  |       // check for evaluation at a negative pole: | ||
|  |       // | ||
|  |       if(remainder == 0) | ||
|  |       { | ||
|  |          return policies::raise_pole_error<ntl::RR>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); | ||
|  |       } | ||
|  |       result = constants::pi<ntl::RR>() / tan(constants::pi<ntl::RR>() * remainder); | ||
|  |    } | ||
|  |    result += big_digamma(x); | ||
|  |    return result; | ||
|  | } | ||
|  | 
 | ||
|  | } // namespace detail | ||
|  | 
 | ||
|  | } // namespace math | ||
|  | } // namespace boost | ||
|  | 
 | ||
|  | #endif // BOOST_MATH_REAL_CONCEPT_HPP | ||
|  | 
 | ||
|  | 
 |