90 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Mathematica
		
	
	
	
	
	
		
		
			
		
	
	
			90 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Mathematica
		
	
	
	
	
	
|   | clear all;
 | ||
|  | global N
 | ||
|  | global R
 | ||
|  | global A
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | function retval = f1(theta)
 | ||
|  |   global N;
 | ||
|  |   global R;
 | ||
|  |   retval=0.0;
 | ||
|  |   gterm = gammaln(N/2) - gammaln((N+1)/2) - log(2*sqrt(pi));
 | ||
|  |   rhs = -N*R*log(2);
 | ||
|  |   lhs=gterm + (N-1)*log(sin(theta)) + log(1-(tan(theta).^2)/N) - log(cos(theta));
 | ||
|  |   retval = rhs-real(lhs);
 | ||
|  | endfunction
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | function retval = d(N,i,x)
 | ||
|  |   t1=(x.^2)/2;
 | ||
|  |   t2=gammaln(N/2);
 | ||
|  |   t3=-gammaln(i/2+1);
 | ||
|  |   t4=-gammaln(N-i);
 | ||
|  |   t5=(N-1-i)*log(sqrt(2)*x);
 | ||
|  |   t6=-log(2)/2;
 | ||
|  |   t7arg=1+(-1)^i * gammainc((x.^2)/2.0,(i+1)/2);
 | ||
|  |   t7=log(t7arg);
 | ||
|  |   retval=t1+t2+t3+t4+t5+t6+t7;
 | ||
|  | endfunction
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | function retval = maxstar(x1,x2)
 | ||
|  |   retval = max(x1,x2)+log(1+exp(-abs(x1-x2)));
 | ||
|  | endfunction
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | function retval = spb_integrand(x)
 | ||
|  |  global N;
 | ||
|  |  global A;
 | ||
|  | 
 | ||
|  |  t1=log(N-1);
 | ||
|  |  t2=-N*(A^2)/2;
 | ||
|  |  t3=-0.5*log(2*pi);
 | ||
|  |  t4=(N-2)*log(sin(x));
 | ||
|  | 
 | ||
|  |  arg=sqrt(N)*A*cos(x);
 | ||
|  |  t5=maxstar(d(N,0,arg),d(N,1,arg));
 | ||
|  |  for i=2:N-1
 | ||
|  |    t5=maxstar(t5,d(N,i,arg));
 | ||
|  |  endfor
 | ||
|  | 
 | ||
|  |  retval=exp(t1+t2+t3+t4+t5);
 | ||
|  | endfunction
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | function retval = qfunc(x)
 | ||
|  |   retval = 0.5 * erfc(x/sqrt(2));
 | ||
|  | endfunction
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | # Calculate sphere packing lower bound on the probability of word error
 | ||
|  | # given block length (N), code rate (R), and Eb/No.
 | ||
|  | # 
 | ||
|  | # Ref: 
 | ||
|  | # "Log-Domain Calculation of the 1959 Sphere-Packing Bound with Application to 
 | ||
|  | # M-ary PSK Block Coded Modulation," Igal Sason and Gil Weichman, 
 | ||
|  | # doi: 10.1109/EEEI.2006.321097
 | ||
|  | #-------------------------------------------------------------------------------
 | ||
|  | N=174
 | ||
|  | K=75
 | ||
|  | R=K/N
 | ||
|  | 
 | ||
|  | delta=0.01;
 | ||
|  | [ths,fval,info,output]=fzero(@f1,[delta,pi/2-delta], optimset ("jacobian", "off"));
 | ||
|  | 
 | ||
|  | for ebnodb=-6:0.5:4
 | ||
|  |   ebno=10^(ebnodb/10.0);
 | ||
|  |   esno=ebno*R;
 | ||
|  |   A=sqrt(2*esno);
 | ||
|  |   term1=quadcc(@spb_integrand,ths,pi/2);
 | ||
|  |   term2=qfunc(sqrt(N)*A);
 | ||
|  |   pe=term1+term2;
 | ||
|  |   ps=1-pe;
 | ||
|  |   printf("%f %f\n",ebnodb,ps);
 | ||
|  | endfor
 |