188 lines
5.8 KiB
Fortran
188 lines
5.8 KiB
Fortran
|
program chkfft
|
||
|
|
||
|
! Tests and times one-dimensional FFTs computed by FFTW3
|
||
|
use FFTW3
|
||
|
parameter (NMAX=8*1024*1024) !Maximum FFT length
|
||
|
complex a(NMAX),b(NMAX),c(NMAX)
|
||
|
real ar(NMAX),br(NMAX),cr(NMAX)
|
||
|
real mflops
|
||
|
integer*8 plan1,plan2 !Pointers to stored plans
|
||
|
character infile*12,arg*8
|
||
|
logical list
|
||
|
common/patience/npatience
|
||
|
equivalence (a,ar),(b,br),(c,cr)
|
||
|
! include 'fftw3.f90' !FFTW definitions
|
||
|
|
||
|
nargs=iargc()
|
||
|
if(nargs.ne.6) then
|
||
|
print*,'Usage: chkfft <nfft | infile> nr nw nc np inplace'
|
||
|
print*,' nfft: length of FFT'
|
||
|
print*,' nfft=0: do lengths 2^n, n=2^4 to 2^23'
|
||
|
print*,' infile: name of file with nfft values, one per line'
|
||
|
print*,' nr: 0/1 to not read (or read) wisdom'
|
||
|
print*,' nw: 0/1 to not write (or write) wisdom'
|
||
|
print*,' nc: 0/1 for real or complex data'
|
||
|
print*,' np: 0-4 patience for finding best algorithm'
|
||
|
print*,' inplace: 1 for inplace, 0 otherwise'
|
||
|
go to 999
|
||
|
endif
|
||
|
|
||
|
list=.false.
|
||
|
nfft=-1
|
||
|
call getarg(1,infile)
|
||
|
open(10,file=infile,status='old',err=1)
|
||
|
list=.true. !A valid file name was provided
|
||
|
go to 2
|
||
|
1 read(infile,*) nfft !Take first argument to be nfft
|
||
|
2 call getarg(2,arg)
|
||
|
read(arg,*) nr
|
||
|
call getarg(3,arg)
|
||
|
read(arg,*) nw
|
||
|
call getarg(4,arg)
|
||
|
read(arg,*) ncomplex
|
||
|
call getarg(5,arg)
|
||
|
read(arg,*) npatience
|
||
|
call getarg(6,arg)
|
||
|
read(arg,*) inplace
|
||
|
|
||
|
if(list) write(*,1000) infile,nr,nw,ncomplex,npatience
|
||
|
1000 format(/'infile: ',a12,' nr:',i2,' nw',i2,' nc:',i2,' np:',i2/)
|
||
|
if(.not.list) write(*,1002) nfft,nr,nw,ncomplex,npatience
|
||
|
1002 format(/'nfft: ',i10,' nr:',i2,' nw',i2,' nc:',i2,' np:',i2/)
|
||
|
|
||
|
nflags=FFTW_ESTIMATE
|
||
|
if(npatience.eq.1) nflags=FFTW_ESTIMATE_PATIENT
|
||
|
if(npatience.eq.2) nflags=FFTW_MEASURE
|
||
|
if(npatience.eq.3) nflags=FFTW_PATIENT
|
||
|
if(npatience.eq.4) nflags=FFTW_EXHAUSTIVE
|
||
|
|
||
|
open(12,file='chkfft.out',status='unknown')
|
||
|
open(13,file='fftwf_wisdom.dat',status='unknown')
|
||
|
|
||
|
if(nr.ne.0) then
|
||
|
call import_wisdom_from_file(isuccess,13)
|
||
|
if(isuccess.eq.0) then
|
||
|
write(*,1010)
|
||
|
1010 format('Failed to import FFTW wisdom.')
|
||
|
go to 999
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
idum=-1 !Set random seed
|
||
|
ndim=1 !One-dimensional transforms
|
||
|
do i=1,NMAX !Set random data
|
||
|
x=gran()
|
||
|
y=gran()
|
||
|
b(i)=cmplx(x,y) !Generate random data
|
||
|
enddo
|
||
|
|
||
|
iters=1000000
|
||
|
if(list .or. (nfft.gt.0)) then
|
||
|
n1=1
|
||
|
n2=1
|
||
|
if(nfft.eq.-1) n2=999999
|
||
|
write(*,1020)
|
||
|
1020 format(' NFFT Time rms MHz MFlops iters', &
|
||
|
' tplan'/61('-'))
|
||
|
else
|
||
|
n1=4
|
||
|
n2=23
|
||
|
write(*,1030)
|
||
|
1030 format(' n N=2^n Time rms MHz MFlops iters', &
|
||
|
' tplan'/63('-'))
|
||
|
endif
|
||
|
|
||
|
do ii=n1,n2 !Test one or more FFT lengths
|
||
|
if(list) then
|
||
|
read(10,*,end=900) nfft !Read nfft from file
|
||
|
else if(n2.gt.n1) then
|
||
|
nfft=2**ii !Do powers of 2
|
||
|
endif
|
||
|
|
||
|
iformf=1
|
||
|
iformb=1
|
||
|
if(ncomplex.eq.0) then
|
||
|
iformf=0 !Real-to-complex transform
|
||
|
iformb=-1 !Complex-to-real (inverse) transform
|
||
|
endif
|
||
|
|
||
|
if(nfft.gt.NMAX) go to 900
|
||
|
a(1:nfft)=b(1:nfft) !Copy test data into a()
|
||
|
t0=second()
|
||
|
if(inplace.ne.0) then
|
||
|
if(ncomplex.ne.0) then
|
||
|
call sfftw_plan_dft_1d(plan1,nfft,a,a,FFTW_FORWARD,nflags)
|
||
|
call sfftw_plan_dft_1d(plan2,nfft,a,a,FFTW_BACKWARD,nflags)
|
||
|
else
|
||
|
call sfftw_plan_dft_r2c_1d(plan1,nfft,a,a,nflags)
|
||
|
call sfftw_plan_dft_c2r_1d(plan2,nfft,a,a,nflags)
|
||
|
endif
|
||
|
else
|
||
|
if(ncomplex.ne.0) then
|
||
|
call sfftw_plan_dft_1d(plan1,nfft,a,c,FFTW_FORWARD,nflags)
|
||
|
call sfftw_plan_dft_1d(plan2,nfft,c,a,FFTW_BACKWARD,nflags)
|
||
|
else
|
||
|
call sfftw_plan_dft_r2c_1d(plan1,nfft,a,c,nflags)
|
||
|
call sfftw_plan_dft_c2r_1d(plan2,nfft,c,a,nflags)
|
||
|
endif
|
||
|
endif
|
||
|
|
||
|
t2=second()
|
||
|
tplan=t2-t0 !Total planning time for this length
|
||
|
|
||
|
total=0.
|
||
|
do iter=1,iters !Now do many iterations
|
||
|
a(1:nfft)=b(1:nfft) !Copy test data into a()
|
||
|
t0=second()
|
||
|
call sfftw_execute(plan1)
|
||
|
call sfftw_execute(plan2)
|
||
|
t1=second()
|
||
|
total=total+t1-t0
|
||
|
if(total.ge.1.0) go to 40 !Cut iterations short if t>1 s
|
||
|
enddo
|
||
|
iter=iters
|
||
|
|
||
|
40 time=0.5*total/iter !Time for one FFT of current length
|
||
|
tplan=0.5*tplan-time !Planning time for one FFT
|
||
|
if(tplan.lt.0) tplan=0.
|
||
|
a(1:nfft)=a(1:nfft)/nfft
|
||
|
|
||
|
! Compute RMS difference between original array and back-transformed array.
|
||
|
sq=0.
|
||
|
if(ncomplex.eq.1) then
|
||
|
do i=1,nfft
|
||
|
sq=sq + real(a(i)-b(i))**2 + imag(a(i)-b(i))**2
|
||
|
enddo
|
||
|
else
|
||
|
do i=1,nfft
|
||
|
sq=sq + (ar(i)-br(i))**2
|
||
|
enddo
|
||
|
endif
|
||
|
rms=sqrt(sq/nfft)
|
||
|
|
||
|
freq=1.e-6*nfft/time
|
||
|
mflops=5.0/(1.e6*time/(nfft*log(float(nfft))/log(2.0)))
|
||
|
if(n2.eq.1 .or. n2.eq.999999) then
|
||
|
write(*,1050) nfft,time,rms,freq,mflops,iter,tplan
|
||
|
write(12,1050) nfft,time,rms,freq,mflops,iter,tplan
|
||
|
1050 format(i8,f11.7,f12.8,f7.2,f8.1,i8,f6.1)
|
||
|
else
|
||
|
write(*,1060) ii,nfft,time,rms,freq,mflops,iter,tplan
|
||
|
write(12,1060) ii,nfft,time,rms,freq,mflops,iter,tplan
|
||
|
1060 format(i2,i8,f11.7,f12.8,f7.2,f8.1,i8,f6.1)
|
||
|
endif
|
||
|
enddo
|
||
|
|
||
|
900 continue
|
||
|
if(nw.eq.1) then
|
||
|
rewind 13
|
||
|
call export_wisdom_to_file(13)
|
||
|
! write(*,1070)
|
||
|
!1070 format(/'Exported FFTW wisdom')
|
||
|
endif
|
||
|
|
||
|
call sfftw_destroy_plan(plan1)
|
||
|
call sfftw_destroy_plan(plan2)
|
||
|
|
||
|
999 end program chkfft
|