js8call/lib/fsk4hf/mskhfsim.f90

195 lines
7.4 KiB
Fortran
Raw Normal View History

2018-02-08 21:28:33 -05:00
program msksim
! Simulate characteristics of a potential "MSK10" mode using LDPC (168,84)
! code, OQPDK modulation, and 30 s T/R sequences.
! Reception and Demodulation algorithm:
! 1. Compute coarse spectrum; find fc1 = approx carrier freq
! 2. Mix from fc1 to 0; LPF at +/- 0.75*R
! 3. Square, FFT; find peaks near -R/2 and +R/2 to get fc2
! 4. Mix from fc2 to 0
! 5. Fit cb13 (central part of csync) to c -> lag, phase
! 6. Fit complex ploynomial for channel equalization
! 7. Get soft bits from equalized data
parameter (KK=84) !Information bits (72 + CRC12)
parameter (ND=168) !Data symbols: LDPC (168,84), r=1/2
parameter (NS=65) !Sync symbols (2 x 26 + Barker 13)
parameter (NR=3) !Ramp up/down
parameter (NN=NR+NS+ND) !Total symbols (236)
parameter (NSPS=1152/72) !Samples per MSK symbol (16)
parameter (N2=2*NSPS) !Samples per OQPSK symbol (32)
parameter (N13=13*N2) !Samples in central sync vector (416)
parameter (NZ=NSPS*NN) !Samples in baseband waveform (3776)
parameter (NFFT1=4*NSPS,NH1=NFFT1/2)
character*8 arg
complex cbb(0:NZ-1) !Complex baseband waveform
complex csync(0:NZ-1) !Sync symbols only, from cbb
complex cb13(0:N13-1) !Barker 13 waveform
complex c(0:NZ-1) !Complex waveform
complex c0(0:NZ-1) !Complex waveform
complex zz(NS+ND) !Complex symbol values (intermediate)
complex z
real xnoise(0:NZ-1) !Generated random noise
real ynoise(0:NZ-1) !Generated random noise
real rxdata(ND),llr(ND) !Soft symbols
real pp(2*NSPS) !Shaped pulse for OQPSK
real a(5) !For twkfreq1
real aa(20),bb(20) !Fitted polyco's
integer id(NS+ND) !NRZ values (+/-1) for Sync and Data
integer ierror(NS+ND)
integer icw(NN)
integer*1 msgbits(KK),decoded(KK),apmask(ND),cw(ND)
! integer*1 codeword(ND)
data msgbits/0,0,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0,1, &
1,1,1,0,1,1,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,1, &
1,1,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0/
nargs=iargc()
if(nargs.ne.6) then
print*,'Usage: mskhfsim f0(Hz) delay(ms) fspread(Hz) maxn iters snr(dB)'
print*,'Example: mskhfsim 0 0 0 5 10 -20'
print*,'Set snr=0 to cycle through a range'
go to 999
endif
call getarg(1,arg)
read(arg,*) f0 !Generated carrier frequency
call getarg(2,arg)
read(arg,*) delay !Delta_t (ms) for Watterson model
call getarg(3,arg)
read(arg,*) fspread !Fspread (Hz) for Watterson model
call getarg(4,arg)
read(arg,*) maxn !Max nterms for polyfit
call getarg(5,arg)
read(arg,*) iters !Iterations at each SNR
call getarg(6,arg)
read(arg,*) snrdb !Specified SNR_2500
twopi=8.0*atan(1.0)
fs=12000.0/72.0 !Sample rate = 166.6666667 Hz
dt=1.0/fs !Sample interval (s)
tt=NSPS*dt !Duration of "itone" symbols (s)
ts=2*NSPS*dt !Duration of OQPSK symbols (s)
baud=1.0/tt !Keying rate for "itone" symbols (baud)
txt=NZ*dt !Transmission length (s)
bandwidth_ratio=2500.0/(fs/2.0)
write(*,1000) f0,delay,fspread,maxn,iters,baud,3*baud,txt
1000 format('f0:',f5.1,' Delay:',f4.1,' fSpread:',f5.2,' maxn:',i3, &
' Iters:',i6/'Baud:',f7.3,' BW:',f5.1,' TxT:',f5.1,f5.2/)
write(*,1004)
1004 format(/' SNR err ber fer fsigma'/37('-'))
do i=1,N2 !Half-sine pulse shape
pp(i)=sin(0.5*(i-1)*twopi/(2*NSPS))
enddo
call genmskhf(msgbits,id,icw,cbb,csync)!Generate baseband waveform and csync
cb13=csync(1680:2095) !Copy the Barker 13 waveform
a=0.
a(1)=f0
call twkfreq1(cbb,NZ,fs,a,cbb) !Mix to specified frequency
isna=-10
isnb=-30
if(snrdb.ne.0.0) then
isna=nint(snrdb)
isnb=isna
endif
do isnr=isna,isnb,-1 !Loop over SNR range
snrdb=isnr
sig=sqrt(bandwidth_ratio) * 10.0**(0.05*snrdb)
if(snrdb.gt.90.0) sig=1.0
nhard=0
nhardsync=0
nfe=0
sqf=0.
do iter=1,iters !Loop over requested iterations
c=cbb
if(delay.ne.0.0 .or. fspread.ne.0.0) then
call watterson(c,NZ,fs,delay,fspread)
endif
c=sig*c !Scale to requested SNR
if(snrdb.lt.90) then
do i=0,NZ-1 !Generate gaussian noise
xnoise(i)=gran()
ynoise(i)=gran()
enddo
c=c + cmplx(xnoise,ynoise) !Add AWGN noise
endif
call getfc1(c,fc1) !First approx for freq
call getfc2(c,csync,fc1,fc2,fc3) !Refined freq
sqf=sqf + (fc1+fc2-f0)**2
!NB: Measured performance is about equally good using fc2 or fc3 here:
a(1)=-(fc1+fc2)
a(2:5)=0.
call twkfreq1(c,NZ,fs,a,c) !Mix c down by fc1+fc2
! The following may not be necessary?
! z=sum(c(1680:2095)*cb13)/208.0 !Get phase from Barker 13 vector
! z0=z/abs(z)
! c=c*conjg(z0)
!---------------------------------------------------------------- DT
! Not presently used:
amax=0.
jpk=0
do j=-20*NSPS,20*NSPS !Get jpk
z=sum(c(1680+j:2095+j)*cb13)/208.0
if(abs(z).gt.amax) then
amax=abs(z)
jpk=j
endif
enddo
xdt=jpk/fs
nterms=maxn
c0=c
do itry=1,10
idf=itry/2
if(mod(itry,2).eq.0) idf=-idf
nhard0=0
nhardsync0=0
ifer=1
a(1)=idf*0.01
a(2:5)=0.
call twkfreq1(c0,NZ,fs,a,c) !Mix c0 into c
call cpolyfit(c,pp,id,maxn,aa,bb,zz,nhs)
call msksoftsym(zz,aa,bb,id,nterms,ierror,rxdata,nhard0,nhardsync0)
if(nhardsync0.gt.12) cycle
rxav=sum(rxdata)/ND
rx2av=sum(rxdata*rxdata)/ND
rxsig=sqrt(rx2av-rxav*rxav)
rxdata=rxdata/rxsig
ss=0.84
llr=2.0*rxdata/(ss*ss)
apmask=0
max_iterations=40
ifer=0
call bpdecode168(llr,apmask,max_iterations,decoded,niterations,cw)
nbadcrc=0
if(niterations.ge.0) call chkcrc12(decoded,nbadcrc)
if(niterations.lt.0 .or. count(msgbits.ne.decoded).gt.0 .or. &
nbadcrc.ne.0) ifer=1
! if(ifer.eq.0) write(67,1301) snrdb,itry,idf,niterations, &
! nhardsync0,nhard0
!1301 format(f6.1,5i6)
if(ifer.eq.0) exit
enddo !Freq dither loop
nhard=nhard+nhard0
nhardsync=nharsdync+nhardsync0
nfe=nfe+ifer
enddo
fsigma=sqrt(sqf/iters)
ber=float(nhard)/((NS+ND)*iters)
fer=float(nfe)/iters
write(*,1050) snrdb,nhard,ber,fer,fsigma
! write(60,1050) snrdb,nhard,ber,fer,fsigma
1050 format(f6.1,i7,f8.4,f7.3,f8.2)
enddo
999 end program msksim