76 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			76 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
|   | subroutine analytic(d,npts,nfft,c,pc,beq)
 | ||
|  | 
 | ||
|  | ! Convert real data to analytic signal
 | ||
|  | 
 | ||
|  |   parameter (NFFTMAX=1024*1024)
 | ||
|  | 
 | ||
|  |   real d(npts)              ! passband signal
 | ||
|  |   real h(NFFTMAX/2)         ! real BPF magnitude
 | ||
|  |   real*8 pc(5),pclast(5)    ! static phase coeffs
 | ||
|  |   real*8 ac(5),aclast(5)    ! amp coeffs
 | ||
|  |   real*8 fp
 | ||
|  | 
 | ||
|  |   complex corr(NFFTMAX/2)  ! complex frequency-dependent correction 
 | ||
|  |   complex c(NFFTMAX)        ! analytic signal
 | ||
|  | 
 | ||
|  |   logical*1 beq            ! boolean static equalizer flag
 | ||
|  | 
 | ||
|  |   data nfft0/0/
 | ||
|  |   data aclast/0.0,0.0,0.0,0.0,0.0/
 | ||
|  |   data pclast/0.0,0.0,0.0,0.0,0.0/
 | ||
|  | !  data ac/1.0,0.05532,0.11438,0.12918,0.09274/ ! amp coeffs for TS2000
 | ||
|  |   data ac/1.0,0.0,0.0,0.0,0.0/ 
 | ||
|  | 
 | ||
|  |   save corr,nfft0,h,ac,aclast,pclast,pi,t,beta
 | ||
|  | 
 | ||
|  |   df=12000.0/nfft
 | ||
|  |   nh=nfft/2
 | ||
|  |   if( nfft.ne.nfft0 ) then
 | ||
|  |      pi=4.0*atan(1.0)
 | ||
|  |      t=1.0/2000.0
 | ||
|  |      beta=0.1
 | ||
|  |      do i=1,nh+1
 | ||
|  |         ff=(i-1)*df
 | ||
|  |         f=ff-1500.0
 | ||
|  |         h(i)=1.0
 | ||
|  |         if(abs(f).gt.(1-beta)/(2*t) .and. abs(f).le.(1+beta)/(2*t)) then
 | ||
|  |            h(i)=h(i)*0.5*(1+cos((pi*t/beta )*(abs(f)-(1-beta)/(2*t))))
 | ||
|  |         elseif( abs(f) .gt. (1+beta)/(2*t) ) then
 | ||
|  |            h(i)=0.0
 | ||
|  |         endif
 | ||
|  |      enddo
 | ||
|  |      nfft0=nfft
 | ||
|  |   endif
 | ||
|  | 
 | ||
|  |   if( any(aclast .ne. ac) .or. any(pclast .ne. pc) ) then
 | ||
|  |      aclast=ac
 | ||
|  |      pclast=pc
 | ||
|  | !     write(*,3001) pc
 | ||
|  | !3001 format('Phase coeffs:',5f12.6)
 | ||
|  |      do i=1,nh+1
 | ||
|  |         ff=(i-1)*df
 | ||
|  |         f=ff-1500.0
 | ||
|  |         fp=f/1000.0
 | ||
|  |         corr(i)=ac(1)+fp*(ac(2)+fp*(ac(3)+fp*(ac(4)+fp*ac(5))))
 | ||
|  |         pd=fp*fp*(pc(3)+fp*(pc(4)+fp*pc(5))) ! ignore 1st two terms
 | ||
|  |         corr(i)=corr(i)*cmplx(cos(pd),sin(pd))
 | ||
|  |      enddo
 | ||
|  |   endif
 | ||
|  | 
 | ||
|  |   fac=2.0/nfft
 | ||
|  |   c(1:npts)=fac*d(1:npts)
 | ||
|  |   c(npts+1:nfft)=0.
 | ||
|  |   call four2a(c,nfft,1,-1,1)               !Forward c2c FFT
 | ||
|  | 
 | ||
|  |   if( beq ) then
 | ||
|  |     c(1:nh+1)=h(1:nh+1)*corr(1:nh+1)*c(1:nh+1)
 | ||
|  |   else
 | ||
|  |     c(1:nh+1)=h(1:nh+1)*c(1:nh+1)
 | ||
|  |   endif
 | ||
|  | 
 | ||
|  |   c(1)=0.5*c(1)                            !Half of DC term
 | ||
|  |   c(nh+2:nfft)=0.                          !Zero the negative frequencies
 | ||
|  |   call four2a(c,nfft,1,1,1)                !Inverse c2c FFT
 | ||
|  |   return
 | ||
|  | end subroutine analytic
 |