subroutine osd174(llr,ndeep,decoded,cw,nhardmin,dmin) ! ! An ordered-statistics decoder for the (174,87) code. ! include "ldpc_174_87_params.f90" integer*1 gen(K,N) integer*1 genmrb(K,N),g2(N,K) integer*1 temp(K),m0(K),me(K),mi(K),misub(K),e2sub(N-K),e2(N-K),ui(N-K) integer*1 r2pat(N-K) integer indices(N),nxor(N) integer*1 cw(N),ce(N),c0(N),hdec(N) integer*1 decoded(K) integer indx(N) real llr(N),rx(N),absrx(N) logical first,reset data first/.true./ save first,gen if( first ) then ! fill the generator matrix gen=0 do i=1,M do j=1,22 read(g(i)(j:j),"(Z1)") istr do jj=1, 4 irow=(j-1)*4+jj if( btest(istr,4-jj) ) gen(irow,i)=1 enddo enddo enddo do irow=1,K gen(irow,M+irow)=1 enddo first=.false. endif ! Re-order received vector to place systematic msg bits at the end. rx=llr(colorder+1) ! Hard decisions on the received word. hdec=0 where(rx .ge. 0) hdec=1 ! Use magnitude of received symbols as a measure of reliability. absrx=abs(rx) call indexx(absrx,N,indx) ! Re-order the columns of the generator matrix in order of decreasing reliability. do i=1,N genmrb(1:K,i)=gen(1:K,indx(N+1-i)) indices(i)=indx(N+1-i) enddo ! Do gaussian elimination to create a generator matrix with the most reliable ! received bits in positions 1:K in order of decreasing reliability (more or less). do id=1,K ! diagonal element indices do icol=id,K+20 ! The 20 is ad hoc - beware iflag=0 if( genmrb(id,icol) .eq. 1 ) then iflag=1 if( icol .ne. id ) then ! reorder column temp(1:K)=genmrb(1:K,id) genmrb(1:K,id)=genmrb(1:K,icol) genmrb(1:K,icol)=temp(1:K) itmp=indices(id) indices(id)=indices(icol) indices(icol)=itmp endif do ii=1,K if( ii .ne. id .and. genmrb(ii,id) .eq. 1 ) then genmrb(ii,1:N)=ieor(genmrb(ii,1:N),genmrb(id,1:N)) endif enddo exit endif enddo enddo g2=transpose(genmrb) ! The hard decisions for the K MRB bits define the order 0 message, m0. ! Encode m0 using the modified generator matrix to find the "order 0" codeword. ! Flip various combinations of bits in m0 and re-encode to generate a list of ! codewords. Return the member of the list that has the smallest Euclidean ! distance to the received word. hdec=hdec(indices) ! hard decisions from received symbols m0=hdec(1:K) ! zero'th order message absrx=absrx(indices) rx=rx(indices) call mrbencode(m0,c0,g2,N,K) nxor=ieor(c0,hdec) nhardmin=sum(nxor) dmin=sum(nxor*absrx) cw=c0 ntotal=0 nrejected=0 if(ndeep.eq.0) goto 998 ! norder=0 if(ndeep.gt.5) ndeep=5 if( ndeep.eq. 1) then nord=1 npre1=0 npre2=0 nt=40 ntheta=12 elseif(ndeep.eq.2) then nord=1 npre1=1 npre2=0 nt=40 ntheta=12 elseif(ndeep.eq.3) then nord=1 npre1=1 npre2=1 nt=40 ntheta=12 ntau=14 elseif(ndeep.eq.4) then nord=2 npre1=1 npre2=0 nt=40 ntheta=12 ntau=19 elseif(ndeep.eq.5) then nord=2 npre1=1 npre2=1 nt=40 ntheta=12 ntau=19 endif do iorder=1,nord misub(1:K-iorder)=0 misub(K-iorder+1:K)=1 iflag=K-iorder+1 do while(iflag .ge.0) if(iorder.eq.nord .and. npre1.eq.0) then iend=iflag else iend=1 endif do n1=iflag,iend,-1 mi=misub mi(n1)=1 ntotal=ntotal+1 me=ieor(m0,mi) if(n1.eq.iflag) then call mrbencode(me,ce,g2,N,K) e2sub=ieor(ce(K+1:N),hdec(K+1:N)) e2=e2sub nd1Kpt=sum(e2sub(1:nt))+1 d1=sum(ieor(me(1:K),hdec(1:K))*absrx(1:K)) else e2=ieor(e2sub,g2(K+1:N,n1)) nd1Kpt=sum(e2(1:nt))+2 endif if(nd1Kpt .le. ntheta) then call mrbencode(me,ce,g2,N,K) nxor=ieor(ce,hdec) if(n1.eq.iflag) then dd=d1+sum(e2sub*absrx(K+1:N)) else dd=d1+ieor(ce(n1),hdec(n1))*absrx(n1)+sum(e2*absrx(K+1:N)) endif if( dd .lt. dmin ) then dmin=dd cw=ce nhardmin=sum(nxor) nd1Kptbest=nd1Kpt endif else nrejected=nrejected+1 endif enddo ! Get the next test error pattern, iflag will go negative ! when the last pattern with weight iorder has been generated. call nextpat(misub,k,iorder,iflag) enddo enddo if(npre2.eq.1) then reset=.true. ntotal=0 do i1=K,1,-1 do i2=i1-1,1,-1 ntotal=ntotal+1 mi(1:ntau)=ieor(g2(K+1:K+ntau,i1),g2(K+1:K+ntau,i2)) call boxit(reset,mi(1:ntau),ntau,ntotal,i1,i2) enddo enddo ncount2=0 ntotal2=0 reset=.true. ! Now run through again and do the second pre-processing rule misub(1:K-nord)=0 misub(K-nord+1:K)=1 iflag=K-nord+1 do while(iflag .ge.0) me=ieor(m0,misub) call mrbencode(me,ce,g2,N,K) e2sub=ieor(ce(K+1:N),hdec(K+1:N)) do i2=0,ntau ntotal2=ntotal2+1 ui=0 if(i2.gt.0) ui(i2)=1 r2pat=ieor(e2sub,ui) 778 continue call fetchit(reset,r2pat(1:ntau),ntau,in1,in2) if(in1.gt.0.and.in2.gt.0) then ncount2=ncount2+1 mi=misub mi(in1)=1 mi(in2)=1 if(sum(mi).lt.nord+npre1+npre2) cycle me=ieor(m0,mi) call mrbencode(me,ce,g2,N,K) nxor=ieor(ce,hdec) dd=sum(nxor*absrx) if( dd .lt. dmin ) then dmin=dd cw=ce nhardmin=sum(nxor) endif goto 778 endif enddo call nextpat(misub,K,nord,iflag) enddo endif 998 continue ! Re-order the codeword to place message bits at the end. cw(indices)=cw hdec(indices)=hdec decoded=cw(M+1:N) cw(colorder+1)=cw ! put the codeword back into received-word order return end subroutine osd174 subroutine mrbencode(me,codeword,g2,N,K) integer*1 me(K),codeword(N),g2(N,K) ! fast encoding for low-weight test patterns codeword=0 do i=1,K if( me(i) .eq. 1 ) then codeword=ieor(codeword,g2(1:N,i)) endif enddo return end subroutine mrbencode subroutine nextpat(mi,k,iorder,iflag) integer*1 mi(k),ms(k) ! generate the next test error pattern ind=-1 do i=1,k-1 if( mi(i).eq.0 .and. mi(i+1).eq.1) ind=i enddo if( ind .lt. 0 ) then ! no more patterns of this order iflag=ind return endif ms=0 ms(1:ind-1)=mi(1:ind-1) ms(ind)=1 ms(ind+1)=0 if( ind+1 .lt. k ) then nz=iorder-sum(ms) ms(k-nz+1:k)=1 endif mi=ms do i=1,k ! iflag will point to the lowest-index 1 in mi if(mi(i).eq.1) then iflag=i exit endif enddo return end subroutine nextpat subroutine boxit(reset,e2,ntau,npindex,i1,i2) integer*1 e2(1:ntau) integer indexes(4000,2),fp(0:525000),np(4000) logical reset common/boxes/indexes,fp,np if(reset) then patterns=-1 fp=-1 np=-1 sc=-1 indexes=-1 reset=.false. endif indexes(npindex,1)=i1 indexes(npindex,2)=i2 ipat=0 do i=1,ntau if(e2(i).eq.1) then ipat=ipat+ishft(1,ntau-i) endif enddo ip=fp(ipat) ! see what's currently stored in fp(ipat) if(ip.eq.-1) then fp(ipat)=npindex else do while (np(ip).ne.-1) ip=np(ip) enddo np(ip)=npindex endif return end subroutine boxit subroutine fetchit(reset,e2,ntau,i1,i2) integer indexes(4000,2),fp(0:525000),np(4000) integer lastpat integer*1 e2(ntau) logical reset common/boxes/indexes,fp,np save lastpat,inext if(reset) then lastpat=-1 reset=.false. endif ipat=0 do i=1,ntau if(e2(i).eq.1) then ipat=ipat+ishft(1,ntau-i) endif enddo index=fp(ipat) if(lastpat.ne.ipat .and. index.gt.0) then ! return first set of indices i1=indexes(index,1) i2=indexes(index,2) inext=np(index) elseif(lastpat.eq.ipat .and. inext.gt.0) then i1=indexes(inext,1) i2=indexes(inext,2) inext=np(inext) else i1=-1 i2=-1 inext=-1 endif lastpat=ipat return end subroutine fetchit