/* [auto_generated] boost/numeric/odeint/iterator/detail/adaptive_iterator_impl.hpp [begin_description] tba. [end_description] Copyright 2009-2012 Karsten Ahnert Copyright 2009-2012 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_ADAPTIVE_ITERATOR_IMPL_HPP_DEFINED #define BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_ADAPTIVE_ITERATOR_IMPL_HPP_DEFINED #include #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { template< class Iterator , class Stepper , class System , class State , typename Tag , typename StepperTag > class adaptive_iterator_impl; /* * Specilization for controlled steppers */ /** * \brief ODE Iterator with adaptive step size control. The value type of this iterator is the state type of the stepper. * * Implements an ODE iterator with adaptive step size control. Uses controlled steppers. adaptive_iterator is a model * of single-pass iterator. * * The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time. * * \tparam Stepper The stepper type which should be used during the iteration. * \tparam System The type of the system function (ODE) which should be solved. */ template< class Iterator , class Stepper , class System , class State , typename Tag > class adaptive_iterator_impl< Iterator , Stepper , System , State , Tag , controlled_stepper_tag > : public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > { private: typedef Stepper stepper_type; typedef System system_type; typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type; typedef State state_type; typedef typename traits::time_type< stepper_type >::type time_type; typedef typename traits::value_type< stepper_type >::type ode_value_type; #ifndef DOXYGEN_SKIP typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type; #endif public: /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the begin iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator stores a reference of s and changes its value during the iteration. * \param t The initial time. * \param t_end The end time, at which the iteration should stop. * \param dt The initial time step. */ adaptive_iterator_impl( stepper_type stepper , system_type sys , state_type &s , time_type t , time_type t_end , time_type dt ) : base_type( stepper , sys , t , dt ) , m_t_end( t_end ) , m_state( &s ) { if( detail::less_with_sign( this->m_t_end , this->m_t , this->m_dt ) ) this->m_at_end = true; } /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the end iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator store a reference of s and changes its value during the iteration. */ adaptive_iterator_impl( stepper_type stepper , system_type sys , state_type &s ) : base_type( stepper , sys ) , m_state( &s ) { } protected: friend class boost::iterator_core_access; void increment() { if( detail::less_with_sign( this->m_t , this->m_t_end , this->m_dt) ) { if( detail::less_with_sign( this->m_t_end , static_cast(this->m_t + this->m_dt) , this->m_dt ) ) { this->m_dt = this->m_t_end - this->m_t; } unwrapped_stepper_type &stepper = this->m_stepper; const size_t max_attempts = 1000; size_t trials = 0; controlled_step_result res = success; do { res = stepper.try_step( this->m_system , *( this->m_state ) , this->m_t , this->m_dt ); ++trials; } while( ( res == fail ) && ( trials < max_attempts ) ); if( trials == max_attempts ) { BOOST_THROW_EXCEPTION( std::overflow_error( "Adaptive iterator : Maximal number of iterations reached. A step size could not be found." )); } } else { this->m_at_end = true; } } public: const state_type& get_state() const { return *this->m_state; } private: time_type m_t_end; state_type* m_state; }; /* * Specilization for dense outputer steppers */ /** * \brief ODE Iterator with adaptive step size control. The value type of this iterator is the state type of the stepper. * * Implements an ODE iterator with adaptive step size control. Uses dense-output steppers. adaptive_iterator is a model * of single-pass iterator. * * The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time. * * \tparam Stepper The stepper type which should be used during the iteration. * \tparam System The type of the system function (ODE) which should be solved. */ template< class Iterator , class Stepper , class System , class State , typename Tag > class adaptive_iterator_impl< Iterator , Stepper , System , State , Tag , dense_output_stepper_tag > : public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > { private: typedef Stepper stepper_type; typedef System system_type; typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type; typedef State state_type; typedef typename traits::time_type< stepper_type >::type time_type; typedef typename traits::value_type< stepper_type >::type ode_value_type; #ifndef DOXYGEN_SKIP typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type; #endif public: /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the begin iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. * \param t The initial time. * \param t_end The end time, at which the iteration should stop. * \param dt The initial time step. */ adaptive_iterator_impl( stepper_type stepper , system_type sys , state_type &s , time_type t , time_type t_end , time_type dt ) : base_type( stepper , sys , t , dt ) , m_t_end( t_end ) { if( detail::less_eq_with_sign( this->m_t , this->m_t_end , this->m_dt ) ) { unwrapped_stepper_type &st = this->m_stepper; st.initialize( s , this->m_t , this->m_dt ); } else { this->m_at_end = true; } } /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the end iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. */ adaptive_iterator_impl( stepper_type stepper , system_type sys , state_type& /* s */ ) : base_type( stepper , sys ) { } protected: friend class boost::iterator_core_access; void increment() { unwrapped_stepper_type &stepper = this->m_stepper; if( detail::less_with_sign( this->m_t , this->m_t_end , stepper.current_time_step() ) ) { if( detail::less_with_sign( this->m_t_end , static_cast(this->m_t + stepper.current_time_step()) , stepper.current_time_step() ) ) { // make stpper to end exactly at t_end stepper.initialize( stepper.current_state() , stepper.current_time() , static_cast(this->m_t_end-this->m_t) ); } stepper.do_step( this->m_system ); this->m_t = stepper.current_time(); } else { // we have reached t_end this->m_at_end = true; } } public: const state_type& get_state() const { const unwrapped_stepper_type &stepper = this->m_stepper; return stepper.current_state(); } private: time_type m_t_end; }; } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_ADAPTIVE_ITERATOR_IMPL_HPP_DEFINED