/* * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * Copyright (c) 2009 Helge Bahmann * Copyright (c) 2012 Tim Blechmann * Copyright (c) 2014 Andrey Semashev */ /*! * \file atomic/detail/ops_msvc_x86.hpp * * This header contains implementation of the \c operations template. */ #ifndef BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_ #define BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_ #include #include #include #include #include #include #include #if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B) || defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B) #include #include #endif #include #if !defined(_M_IX86) && !(defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8) && defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16)) #include #endif #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif #if defined(BOOST_MSVC) #pragma warning(push) // frame pointer register 'ebx' modified by inline assembly code. See the note below. #pragma warning(disable: 4731) #endif #if defined(BOOST_ATOMIC_DETAIL_X86_HAS_MFENCE) extern "C" void _mm_mfence(void); #if defined(BOOST_MSVC) #pragma intrinsic(_mm_mfence) #endif #endif namespace boost { namespace atomics { namespace detail { /* * Implementation note for asm blocks. * * http://msdn.microsoft.com/en-us/data/k1a8ss06%28v=vs.105%29 * * Some SSE types require eight-byte stack alignment, forcing the compiler to emit dynamic stack-alignment code. * To be able to access both the local variables and the function parameters after the alignment, the compiler * maintains two frame pointers. If the compiler performs frame pointer omission (FPO), it will use EBP and ESP. * If the compiler does not perform FPO, it will use EBX and EBP. To ensure code runs correctly, do not modify EBX * in asm code if the function requires dynamic stack alignment as it could modify the frame pointer. * Either move the eight-byte aligned types out of the function, or avoid using EBX. * * Since we have no way of knowing that the compiler uses FPO, we have to always save and restore ebx * whenever we have to clobber it. Additionally, we disable warning C4731 above so that the compiler * doesn't spam about ebx use. */ struct msvc_x86_operations_base { static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true; static BOOST_FORCEINLINE void hardware_full_fence() BOOST_NOEXCEPT { #if defined(BOOST_ATOMIC_DETAIL_X86_HAS_MFENCE) _mm_mfence(); #else long tmp; BOOST_ATOMIC_INTERLOCKED_EXCHANGE(&tmp, 0); #endif } static BOOST_FORCEINLINE void fence_before(memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); } static BOOST_FORCEINLINE void fence_after(memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); } static BOOST_FORCEINLINE void fence_after_load(memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); // On x86 and x86_64 there is no need for a hardware barrier, // even if seq_cst memory order is requested, because all // seq_cst writes are implemented with lock-prefixed operations // or xchg which has implied lock prefix. Therefore normal loads // are already ordered with seq_cst stores on these architectures. } }; template< typename T, typename Derived > struct msvc_x86_operations : public msvc_x86_operations_base { typedef T storage_type; static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { if (order != memory_order_seq_cst) { fence_before(order); storage = v; fence_after(order); } else { Derived::exchange(storage, v, order); } } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order) BOOST_NOEXCEPT { storage_type v = storage; fence_after_load(order); return v; } static BOOST_FORCEINLINE storage_type fetch_sub(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { typedef typename make_signed< storage_type >::type signed_storage_type; return Derived::fetch_add(storage, static_cast< storage_type >(-static_cast< signed_storage_type >(v)), order); } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return Derived::compare_exchange_strong(storage, expected, desired, success_order, failure_order); } static BOOST_FORCEINLINE bool test_and_set(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { return !!Derived::exchange(storage, (storage_type)1, order); } static BOOST_FORCEINLINE void clear(storage_type volatile& storage, memory_order order) BOOST_NOEXCEPT { store(storage, (storage_type)0, order); } static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT { return true; } }; template< bool Signed > struct operations< 4u, Signed > : public msvc_x86_operations< typename make_storage_type< 4u, Signed >::type, operations< 4u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 4u, Signed >::type, operations< 4u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 4u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD(&storage, v)); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE(&storage, v)); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { storage_type previous = expected; storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE(&storage, desired, previous)); expected = old_val; return (previous == old_val); } #if defined(BOOST_ATOMIC_INTERLOCKED_AND) static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND(&storage, v)); } #else static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { storage_type res = storage; while (!compare_exchange_strong(storage, res, res & v, order, memory_order_relaxed)) {} return res; } #endif #if defined(BOOST_ATOMIC_INTERLOCKED_OR) static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR(&storage, v)); } #else static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { storage_type res = storage; while (!compare_exchange_strong(storage, res, res | v, order, memory_order_relaxed)) {} return res; } #endif #if defined(BOOST_ATOMIC_INTERLOCKED_XOR) static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR(&storage, v)); } #else static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { storage_type res = storage; while (!compare_exchange_strong(storage, res, res ^ v, order, memory_order_relaxed)) {} return res; } #endif }; #if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8) template< bool Signed > struct operations< 1u, Signed > : public msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 1u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD8(&storage, v)); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE8(&storage, v)); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { storage_type previous = expected; storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE8(&storage, desired, previous)); expected = old_val; return (previous == old_val); } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND8(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR8(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR8(&storage, v)); } }; #elif defined(_M_IX86) template< bool Signed > struct operations< 1u, Signed > : public msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 1u, Signed >::type, operations< 1u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 1u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); __asm { mov edx, storage movzx eax, v lock xadd byte ptr [edx], al mov v, al }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); __asm { mov edx, storage movzx eax, v xchg byte ptr [edx], al mov v, al }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order) BOOST_NOEXCEPT { base_type::fence_before(success_order); bool success; __asm { mov esi, expected mov edi, storage movzx eax, byte ptr [esi] movzx edx, desired lock cmpxchg byte ptr [edi], dl mov byte ptr [esi], al sete success }; // The success and failure fences are equivalent anyway base_type::fence_after(success_order); return success; } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, byte ptr [edi] align 16 again: mov dl, al and dl, bl lock cmpxchg byte ptr [edi], dl jne again mov v, al mov ebx, backup }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, byte ptr [edi] align 16 again: mov dl, al or dl, bl lock cmpxchg byte ptr [edi], dl jne again mov v, al mov ebx, backup }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, byte ptr [edi] align 16 again: mov dl, al xor dl, bl lock cmpxchg byte ptr [edi], dl jne again mov v, al mov ebx, backup }; base_type::fence_after(order); return v; } }; #else template< bool Signed > struct operations< 1u, Signed > : public extending_cas_based_operations< operations< 4u, Signed >, 1u, Signed > { }; #endif #if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16) template< bool Signed > struct operations< 2u, Signed > : public msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 2u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD16(&storage, v)); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE16(&storage, v)); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { storage_type previous = expected; storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE16(&storage, desired, previous)); expected = old_val; return (previous == old_val); } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND16(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR16(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR16(&storage, v)); } }; #elif defined(_M_IX86) template< bool Signed > struct operations< 2u, Signed > : public msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 2u, Signed >::type, operations< 2u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 2u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); __asm { mov edx, storage movzx eax, v lock xadd word ptr [edx], ax mov v, ax }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); __asm { mov edx, storage movzx eax, v xchg word ptr [edx], ax mov v, ax }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order) BOOST_NOEXCEPT { base_type::fence_before(success_order); bool success; __asm { mov esi, expected mov edi, storage movzx eax, word ptr [esi] movzx edx, desired lock cmpxchg word ptr [edi], dx mov word ptr [esi], ax sete success }; // The success and failure fences are equivalent anyway base_type::fence_after(success_order); return success; } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, word ptr [edi] align 16 again: mov dx, ax and dx, bx lock cmpxchg word ptr [edi], dx jne again mov v, ax mov ebx, backup }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, word ptr [edi] align 16 again: mov dx, ax or dx, bx lock cmpxchg word ptr [edi], dx jne again mov v, ax mov ebx, backup }; base_type::fence_after(order); return v; } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { base_type::fence_before(order); int backup; __asm { mov backup, ebx xor edx, edx mov edi, storage movzx ebx, v movzx eax, word ptr [edi] align 16 again: mov dx, ax xor dx, bx lock cmpxchg word ptr [edi], dx jne again mov v, ax mov ebx, backup }; base_type::fence_after(order); return v; } }; #else template< bool Signed > struct operations< 2u, Signed > : public extending_cas_based_operations< operations< 4u, Signed >, 2u, Signed > { }; #endif #if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG8B) template< bool Signed > struct msvc_dcas_x86 { typedef typename make_storage_type< 8u, Signed >::type storage_type; typedef typename make_storage_type< 8u, Signed >::aligned aligned_storage_type; static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true; // Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 3A, 8.1.1. Guaranteed Atomic Operations: // // The Pentium processor (and newer processors since) guarantees that the following additional memory operations will always be carried out atomically: // * Reading or writing a quadword aligned on a 64-bit boundary // // Luckily, the memory is almost always 8-byte aligned in our case because atomic<> uses 64 bit native types for storage and dynamic memory allocations // have at least 8 byte alignment. The only unfortunate case is when atomic is placed on the stack and it is not 8-byte aligned (like on 32 bit Windows). static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); storage_type volatile* p = &storage; if (((uint32_t)p & 0x00000007) == 0) { #if defined(_M_IX86_FP) && _M_IX86_FP >= 2 #if defined(__AVX__) __asm { mov edx, p vmovq xmm4, v vmovq qword ptr [edx], xmm4 }; #else __asm { mov edx, p movq xmm4, v movq qword ptr [edx], xmm4 }; #endif #else __asm { mov edx, p fild v fistp qword ptr [edx] }; #endif } else { int backup; __asm { mov backup, ebx mov edi, p mov ebx, dword ptr [v] mov ecx, dword ptr [v + 4] mov eax, dword ptr [edi] mov edx, dword ptr [edi + 4] align 16 again: lock cmpxchg8b qword ptr [edi] jne again mov ebx, backup }; } BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); storage_type const volatile* p = &storage; storage_type value; if (((uint32_t)p & 0x00000007) == 0) { #if defined(_M_IX86_FP) && _M_IX86_FP >= 2 #if defined(__AVX__) __asm { mov edx, p vmovq xmm4, qword ptr [edx] vmovq value, xmm4 }; #else __asm { mov edx, p movq xmm4, qword ptr [edx] movq value, xmm4 }; #endif #else __asm { mov edx, p fild qword ptr [edx] fistp value }; #endif } else { // We don't care for comparison result here; the previous value will be stored into value anyway. // Also we don't care for ebx and ecx values, they just have to be equal to eax and edx before cmpxchg8b. __asm { mov edi, p mov eax, ebx mov edx, ecx lock cmpxchg8b qword ptr [edi] mov dword ptr [value], eax mov dword ptr [value + 4], edx }; } BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); return value; } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { // MSVC-11 in 32-bit mode sometimes generates messed up code without compiler barriers, // even though the _InterlockedCompareExchange64 intrinsic already provides one. BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); storage_type volatile* p = &storage; #if defined(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64) const storage_type old_val = (storage_type)BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64(p, desired, expected); const bool result = (old_val == expected); expected = old_val; #else bool result; int backup; __asm { mov backup, ebx mov edi, p mov esi, expected mov ebx, dword ptr [desired] mov ecx, dword ptr [desired + 4] mov eax, dword ptr [esi] mov edx, dword ptr [esi + 4] lock cmpxchg8b qword ptr [edi] mov dword ptr [esi], eax mov dword ptr [esi + 4], edx mov ebx, backup sete result }; #endif BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); return result; } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return compare_exchange_strong(storage, expected, desired, success_order, failure_order); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); storage_type volatile* p = &storage; int backup; __asm { mov backup, ebx mov edi, p mov ebx, dword ptr [v] mov ecx, dword ptr [v + 4] mov eax, dword ptr [edi] mov edx, dword ptr [edi + 4] align 16 again: lock cmpxchg8b qword ptr [edi] jne again mov ebx, backup mov dword ptr [v], eax mov dword ptr [v + 4], edx }; BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); return v; } static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT { return true; } }; template< bool Signed > struct operations< 8u, Signed > : public cas_based_operations< msvc_dcas_x86< Signed > > { }; #elif defined(_M_AMD64) template< bool Signed > struct operations< 8u, Signed > : public msvc_x86_operations< typename make_storage_type< 8u, Signed >::type, operations< 8u, Signed > > { typedef msvc_x86_operations< typename make_storage_type< 8u, Signed >::type, operations< 8u, Signed > > base_type; typedef typename base_type::storage_type storage_type; typedef typename make_storage_type< 8u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE storage_type fetch_add(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE_ADD64(&storage, v)); } static BOOST_FORCEINLINE storage_type exchange(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_EXCHANGE64(&storage, v)); } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { storage_type previous = expected; storage_type old_val = static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE64(&storage, desired, previous)); expected = old_val; return (previous == old_val); } static BOOST_FORCEINLINE storage_type fetch_and(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_AND64(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_or(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_OR64(&storage, v)); } static BOOST_FORCEINLINE storage_type fetch_xor(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { return static_cast< storage_type >(BOOST_ATOMIC_INTERLOCKED_XOR64(&storage, v)); } }; #endif #if defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B) template< bool Signed > struct msvc_dcas_x86_64 { typedef typename make_storage_type< 16u, Signed >::type storage_type; typedef typename make_storage_type< 16u, Signed >::aligned aligned_storage_type; static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true; static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order) BOOST_NOEXCEPT { storage_type value = const_cast< storage_type& >(storage); while (!BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, v, &value)) {} } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order) BOOST_NOEXCEPT { storage_type value = storage_type(); BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, value, &value); return value; } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { return !!BOOST_ATOMIC_INTERLOCKED_COMPARE_EXCHANGE128(&storage, desired, &expected); } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { return compare_exchange_strong(storage, expected, desired, success_order, failure_order); } static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT { return true; } }; template< bool Signed > struct operations< 16u, Signed > : public cas_based_operations< cas_based_exchange< msvc_dcas_x86_64< Signed > > > { }; #endif // defined(BOOST_ATOMIC_DETAIL_X86_HAS_CMPXCHG16B) BOOST_FORCEINLINE void thread_fence(memory_order order) BOOST_NOEXCEPT { BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); if (order == memory_order_seq_cst) msvc_x86_operations_base::hardware_full_fence(); BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); } BOOST_FORCEINLINE void signal_fence(memory_order order) BOOST_NOEXCEPT { if (order != memory_order_relaxed) BOOST_ATOMIC_DETAIL_COMPILER_BARRIER(); } } // namespace detail } // namespace atomics } // namespace boost #if defined(BOOST_MSVC) #pragma warning(pop) #endif #endif // BOOST_ATOMIC_DETAIL_OPS_MSVC_X86_HPP_INCLUDED_