/* [auto_generated] boost/numeric/odeint/stepper/bulirsch_stoer.hpp [begin_description] Implementation of the Burlish-Stoer method. As described in Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Comput. Mathematics, Vol. 8, Springer-Verlag 1987, Second revised edition 1993. [end_description] Copyright 2011-2013 Mario Mulansky Copyright 2011-2013 Karsten Ahnert Copyright 2012 Christoph Koke Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED #include #include #include // for min/max guidelines #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { template< class State , class Value = double , class Deriv = State , class Time = Value , class Algebra = typename algebra_dispatcher< State >::algebra_type , class Operations = typename operations_dispatcher< State >::operations_type , class Resizer = initially_resizer > class bulirsch_stoer { public: typedef State state_type; typedef Value value_type; typedef Deriv deriv_type; typedef Time time_type; typedef Algebra algebra_type; typedef Operations operations_type; typedef Resizer resizer_type; #ifndef DOXYGEN_SKIP typedef state_wrapper< state_type > wrapped_state_type; typedef state_wrapper< deriv_type > wrapped_deriv_type; typedef controlled_stepper_tag stepper_category; typedef bulirsch_stoer< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type; typedef typename inverse_time< time_type >::type inv_time_type; typedef std::vector< value_type > value_vector; typedef std::vector< time_type > time_vector; typedef std::vector< inv_time_type > inv_time_vector; //should be 1/time_type for boost.units typedef std::vector< value_vector > value_matrix; typedef std::vector< size_t > int_vector; typedef std::vector< wrapped_state_type > state_table_type; #endif //DOXYGEN_SKIP const static size_t m_k_max = 8; bulirsch_stoer( value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 , value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 , time_type max_dt = static_cast(0)) : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) , m_midpoint() , m_last_step_rejected( false ) , m_first( true ) , m_max_dt(max_dt) , m_interval_sequence( m_k_max+1 ) , m_coeff( m_k_max+1 ) , m_cost( m_k_max+1 ) , m_table( m_k_max ) , STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 ) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); /* initialize sequence of stage numbers and work */ for( unsigned short i = 0; i < m_k_max+1; i++ ) { m_interval_sequence[i] = 2 * (i+1); if( i == 0 ) m_cost[i] = m_interval_sequence[i]; else m_cost[i] = m_cost[i-1] + m_interval_sequence[i]; m_coeff[i].resize(i); for( size_t k = 0 ; k < i ; ++k ) { const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] ); m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation } // crude estimate of optimal order m_current_k_opt = 4; /* no calculation because log10 might not exist for value_type! const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >(1.0E-12) ) ) * 0.6 + 0.5 ); m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast( 1 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast( m_k_max-1 ) , logfact )); */ } } /* * Version 1 : try_step( sys , x , t , dt ) * * The overloads are needed to solve the forwarding problem */ template< class System , class StateInOut > controlled_step_result try_step( System system , StateInOut &x , time_type &t , time_type &dt ) { return try_step_v1( system , x , t, dt ); } /** * \brief Second version to solve the forwarding problem, can be used with Boost.Range as StateInOut. */ template< class System , class StateInOut > controlled_step_result try_step( System system , const StateInOut &x , time_type &t , time_type &dt ) { return try_step_v1( system , x , t, dt ); } /* * Version 2 : try_step( sys , x , dxdt , t , dt ) * * this version does not solve the forwarding problem, boost.range can not be used */ template< class System , class StateInOut , class DerivIn > controlled_step_result try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt ) { m_xnew_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_xnew< StateInOut > , detail::ref( *this ) , detail::_1 ) ); controlled_step_result res = try_step( system , x , dxdt , t , m_xnew.m_v , dt ); if( res == success ) { boost::numeric::odeint::copy( m_xnew.m_v , x ); } return res; } /* * Version 3 : try_step( sys , in , t , out , dt ) * * this version does not solve the forwarding problem, boost.range can not be used */ template< class System , class StateIn , class StateOut > typename boost::disable_if< boost::is_same< StateIn , time_type > , controlled_step_result >::type try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt ) { typename odeint::unwrap_reference< System >::type &sys = system; m_dxdt_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateIn > , detail::ref( *this ) , detail::_1 ) ); sys( in , m_dxdt.m_v , t ); return try_step( system , in , m_dxdt.m_v , t , out , dt ); } /* * Full version : try_step( sys , in , dxdt_in , t , out , dt ) * * contains the actual implementation */ template< class System , class StateIn , class DerivIn , class StateOut > controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt ) { if( m_max_dt != static_cast(0) && detail::less_with_sign(m_max_dt, dt, dt) ) { // given step size is bigger then max_dt // set limit and return fail dt = m_max_dt; return fail; } BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); static const value_type val1( 1.0 ); if( m_resizer.adjust_size( in , detail::bind( &controlled_error_bs_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) ) { reset(); // system resized -> reset } if( dt != m_dt_last ) { reset(); // step size changed from outside -> reset } bool reject( true ); time_vector h_opt( m_k_max+1 ); inv_time_vector work( m_k_max+1 ); time_type new_h = dt; /* m_current_k_opt is the estimated current optimal stage number */ for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ ) { /* the stage counts are stored in m_interval_sequence */ m_midpoint.set_steps( m_interval_sequence[k] ); if( k == 0 ) { m_midpoint.do_step( system , in , dxdt , t , out , dt ); /* the first step, nothing more to do */ } else { m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt ); extrapolate( k , m_table , m_coeff , out ); // get error estimate m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v , typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) ); const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt ); h_opt[k] = calc_h_opt( dt , error , k ); work[k] = static_cast( m_cost[k] ) / h_opt[k]; if( (k == m_current_k_opt-1) || m_first ) { // convergence before k_opt ? if( error < 1.0 ) { //convergence reject = false; if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) ) { // leave order as is (except we were in first round) m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast(k)+1 ) ); new_h = h_opt[k]; new_h *= static_cast( m_cost[k+1] ) / static_cast( m_cost[k] ); } else { m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast(k) ) ); new_h = h_opt[k]; } break; } else if( should_reject( error , k ) && !m_first ) { reject = true; new_h = h_opt[k]; break; } } if( k == m_current_k_opt ) { // convergence at k_opt ? if( error < 1.0 ) { //convergence reject = false; if( (work[k-1] < KFAC2*work[k]) ) { m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast(m_current_k_opt)-1 ); new_h = h_opt[m_current_k_opt]; } else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected ) { m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(m_k_max-1) , static_cast(m_current_k_opt)+1 ); new_h = h_opt[k]; new_h *= m_cost[m_current_k_opt]/m_cost[k]; } else new_h = h_opt[m_current_k_opt]; break; } else if( should_reject( error , k ) ) { reject = true; new_h = h_opt[m_current_k_opt]; break; } } if( k == m_current_k_opt+1 ) { // convergence at k_opt+1 ? if( error < 1.0 ) { //convergence reject = false; if( work[k-2] < KFAC2*work[k-1] ) m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast(m_current_k_opt)-1 ); if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected ) m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(m_k_max)-1 , static_cast(k) ); new_h = h_opt[m_current_k_opt]; } else { reject = true; new_h = h_opt[m_current_k_opt]; } break; } } } if( !reject ) { t += dt; } if( !m_last_step_rejected || boost::numeric::odeint::detail::less_with_sign(new_h, dt, dt) ) { // limit step size if( m_max_dt != static_cast(0) ) { new_h = detail::min_abs(m_max_dt, new_h); } m_dt_last = new_h; dt = new_h; } m_last_step_rejected = reject; m_first = false; if( reject ) return fail; else return success; } /** \brief Resets the internal state of the stepper */ void reset() { m_first = true; m_last_step_rejected = false; } /* Resizer methods */ template< class StateIn > void adjust_size( const StateIn &x ) { resize_m_dxdt( x ); resize_m_xnew( x ); resize_impl( x ); m_midpoint.adjust_size( x ); } private: template< class StateIn > bool resize_m_dxdt( const StateIn &x ) { return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable::type() ); } template< class StateIn > bool resize_m_xnew( const StateIn &x ) { return adjust_size_by_resizeability( m_xnew , x , typename is_resizeable::type() ); } template< class StateIn > bool resize_impl( const StateIn &x ) { bool resized( false ); for( size_t i = 0 ; i < m_k_max ; ++i ) resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable::type() ); resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable::type() ); return resized; } template< class System , class StateInOut > controlled_step_result try_step_v1( System system , StateInOut &x , time_type &t , time_type &dt ) { typename odeint::unwrap_reference< System >::type &sys = system; m_dxdt_resizer.adjust_size( x , detail::bind( &controlled_error_bs_type::template resize_m_dxdt< StateInOut > , detail::ref( *this ) , detail::_1 ) ); sys( x , m_dxdt.m_v ,t ); return try_step( system , x , m_dxdt.m_v , t , dt ); } template< class StateInOut > void extrapolate( size_t k , state_table_type &table , const value_matrix &coeff , StateInOut &xest ) /* polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf uses the obtained intermediate results to extrapolate to dt->0 */ { static const value_type val1 = static_cast< value_type >( 1.0 ); for( int j=k-1 ; j>0 ; --j ) { m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v , typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][j] , -coeff[k][j] ) ); } m_algebra.for_each3( xest , table[0].m_v , xest , typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k][0] , -coeff[k][0]) ); } time_type calc_h_opt( time_type h , value_type error , size_t k ) const /* calculates the optimal step size for a given error and stage number */ { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); using std::pow; value_type expo( 1.0/(2*k+1) ); value_type facmin = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , expo ); value_type fac; if (error == 0.0) fac=1.0/facmin; else { fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo ); fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(facmin/STEPFAC4) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast(1.0/facmin) , fac ) ); } return h*fac; } controlled_step_result set_k_opt( size_t k , const inv_time_vector &work , const time_vector &h_opt , time_type &dt ) /* calculates the optimal stage number */ { if( k == 1 ) { m_current_k_opt = 2; return success; } if( (work[k-1] < KFAC1*work[k]) || (k == m_k_max) ) { // order decrease m_current_k_opt = k-1; dt = h_opt[ m_current_k_opt ]; return success; } else if( (work[k] < KFAC2*work[k-1]) || m_last_step_rejected || (k == m_k_max-1) ) { // same order - also do this if last step got rejected m_current_k_opt = k; dt = h_opt[ m_current_k_opt ]; return success; } else { // order increase - only if last step was not rejected m_current_k_opt = k+1; dt = h_opt[ m_current_k_opt-1 ] * m_cost[ m_current_k_opt ] / m_cost[ m_current_k_opt-1 ] ; return success; } } bool in_convergence_window( size_t k ) const { if( (k == m_current_k_opt-1) && !m_last_step_rejected ) return true; // decrease stepsize only if last step was not rejected return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) ); } bool should_reject( value_type error , size_t k ) const { if( k == m_current_k_opt-1 ) { const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] / (m_interval_sequence[0]*m_interval_sequence[0]); //step will fail, criterion 17.3.17 in NR return ( error > d*d ); } else if( k == m_current_k_opt ) { const value_type d = m_interval_sequence[m_current_k_opt] / m_interval_sequence[0]; return ( error > d*d ); } else return error > 1.0; } default_error_checker< value_type, algebra_type , operations_type > m_error_checker; modified_midpoint< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint; bool m_last_step_rejected; bool m_first; time_type m_dt_last; time_type m_t_last; time_type m_max_dt; size_t m_current_k_opt; algebra_type m_algebra; resizer_type m_dxdt_resizer; resizer_type m_xnew_resizer; resizer_type m_resizer; wrapped_state_type m_xnew; wrapped_state_type m_err; wrapped_deriv_type m_dxdt; int_vector m_interval_sequence; // stores the successive interval counts value_matrix m_coeff; int_vector m_cost; // costs for interval count state_table_type m_table; // sequence of states for extrapolation value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2; }; /******** DOXYGEN ********/ /** * \class bulirsch_stoer * \brief The Bulirsch-Stoer algorithm. * * The Bulirsch-Stoer is a controlled stepper that adjusts both step size * and order of the method. The algorithm uses the modified midpoint and * a polynomial extrapolation compute the solution. * * \tparam State The state type. * \tparam Value The value type. * \tparam Deriv The type representing the time derivative of the state. * \tparam Time The time representing the independent variable - the time. * \tparam Algebra The algebra type. * \tparam Operations The operations type. * \tparam Resizer The resizer policy type. */ /** * \fn bulirsch_stoer::bulirsch_stoer( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt ) * \brief Constructs the bulirsch_stoer class, including initialization of * the error bounds. * * \param eps_abs Absolute tolerance level. * \param eps_rel Relative tolerance level. * \param factor_x Factor for the weight of the state. * \param factor_dxdt Factor for the weight of the derivative. */ /** * \fn bulirsch_stoer::try_step( System system , StateInOut &x , time_type &t , time_type &dt ) * \brief Tries to perform one step. * * This method tries to do one step with step size dt. If the error estimate * is to large, the step is rejected and the method returns fail and the * step size dt is reduced. If the error estimate is acceptably small, the * step is performed, success is returned and dt might be increased to make * the steps as large as possible. This method also updates t if a step is * performed. Also, the internal order of the stepper is adjusted if required. * * \param system The system function to solve, hence the r.h.s. of the ODE. * It must fulfill the Simple System concept. * \param x The state of the ODE which should be solved. Overwritten if * the step is successful. * \param t The value of the time. Updated if the step is successful. * \param dt The step size. Updated. * \return success if the step was accepted, fail otherwise. */ /** * \fn bulirsch_stoer::try_step( System system , StateInOut &x , const DerivIn &dxdt , time_type &t , time_type &dt ) * \brief Tries to perform one step. * * This method tries to do one step with step size dt. If the error estimate * is to large, the step is rejected and the method returns fail and the * step size dt is reduced. If the error estimate is acceptably small, the * step is performed, success is returned and dt might be increased to make * the steps as large as possible. This method also updates t if a step is * performed. Also, the internal order of the stepper is adjusted if required. * * \param system The system function to solve, hence the r.h.s. of the ODE. * It must fulfill the Simple System concept. * \param x The state of the ODE which should be solved. Overwritten if * the step is successful. * \param dxdt The derivative of state. * \param t The value of the time. Updated if the step is successful. * \param dt The step size. Updated. * \return success if the step was accepted, fail otherwise. */ /** * \fn bulirsch_stoer::try_step( System system , const StateIn &in , time_type &t , StateOut &out , time_type &dt ) * \brief Tries to perform one step. * * \note This method is disabled if state_type=time_type to avoid ambiguity. * * This method tries to do one step with step size dt. If the error estimate * is to large, the step is rejected and the method returns fail and the * step size dt is reduced. If the error estimate is acceptably small, the * step is performed, success is returned and dt might be increased to make * the steps as large as possible. This method also updates t if a step is * performed. Also, the internal order of the stepper is adjusted if required. * * \param system The system function to solve, hence the r.h.s. of the ODE. * It must fulfill the Simple System concept. * \param in The state of the ODE which should be solved. * \param t The value of the time. Updated if the step is successful. * \param out Used to store the result of the step. * \param dt The step size. Updated. * \return success if the step was accepted, fail otherwise. */ /** * \fn bulirsch_stoer::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , time_type &dt ) * \brief Tries to perform one step. * * This method tries to do one step with step size dt. If the error estimate * is to large, the step is rejected and the method returns fail and the * step size dt is reduced. If the error estimate is acceptably small, the * step is performed, success is returned and dt might be increased to make * the steps as large as possible. This method also updates t if a step is * performed. Also, the internal order of the stepper is adjusted if required. * * \param system The system function to solve, hence the r.h.s. of the ODE. * It must fulfill the Simple System concept. * \param in The state of the ODE which should be solved. * \param dxdt The derivative of state. * \param t The value of the time. Updated if the step is successful. * \param out Used to store the result of the step. * \param dt The step size. Updated. * \return success if the step was accepted, fail otherwise. */ /** * \fn bulirsch_stoer::adjust_size( const StateIn &x ) * \brief Adjust the size of all temporaries in the stepper manually. * \param x A state from which the size of the temporaries to be resized is deduced. */ } } } #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED