/* * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * Copyright (c) 2009, 2011 Helge Bahmann * Copyright (c) 2009 Phil Endecott * Copyright (c) 2013 Tim Blechmann * Linux-specific code by Phil Endecott * Copyright (c) 2014 Andrey Semashev */ /*! * \file atomic/detail/ops_linux_arm.hpp * * This header contains implementation of the \c operations template. */ #ifndef BOOST_ATOMIC_DETAIL_OPS_LINUX_ARM_HPP_INCLUDED_ #define BOOST_ATOMIC_DETAIL_OPS_LINUX_ARM_HPP_INCLUDED_ #include #include #include #include #include #include #include #ifdef BOOST_HAS_PRAGMA_ONCE #pragma once #endif namespace boost { namespace atomics { namespace detail { // Different ARM processors have different atomic instructions. In particular, // architecture versions before v6 (which are still in widespread use, e.g. the // Intel/Marvell XScale chips like the one in the NSLU2) have only atomic swap. // On Linux the kernel provides some support that lets us abstract away from // these differences: it provides emulated CAS and barrier functions at special // addresses that are guaranteed not to be interrupted by the kernel. Using // this facility is slightly slower than inline assembler would be, but much // faster than a system call. // // While this emulated CAS is "strong" in the sense that it does not fail // "spuriously" (i.e.: it never fails to perform the exchange when the value // found equals the value expected), it does not return the found value on // failure. To satisfy the atomic API, compare_exchange_{weak|strong} must // return the found value on failure, and we have to manually load this value // after the emulated CAS reports failure. This in turn introduces a race // between the CAS failing (due to the "wrong" value being found) and subsequently // loading (which might turn up the "right" value). From an application's // point of view this looks like "spurious failure", and therefore the // emulated CAS is only good enough to provide compare_exchange_weak // semantics. struct linux_arm_cas_base { static BOOST_CONSTEXPR_OR_CONST bool is_always_lock_free = true; static BOOST_FORCEINLINE void fence_before_store(memory_order order) BOOST_NOEXCEPT { if ((order & memory_order_release) != 0) hardware_full_fence(); } static BOOST_FORCEINLINE void fence_after_store(memory_order order) BOOST_NOEXCEPT { if (order == memory_order_seq_cst) hardware_full_fence(); } static BOOST_FORCEINLINE void fence_after_load(memory_order order) BOOST_NOEXCEPT { if ((order & (memory_order_consume | memory_order_acquire)) != 0) hardware_full_fence(); } static BOOST_FORCEINLINE void hardware_full_fence() BOOST_NOEXCEPT { typedef void (*kernel_dmb_t)(void); ((kernel_dmb_t)0xffff0fa0)(); } }; template< bool Signed > struct linux_arm_cas : public linux_arm_cas_base { typedef typename make_storage_type< 4u, Signed >::type storage_type; typedef typename make_storage_type< 4u, Signed >::aligned aligned_storage_type; static BOOST_FORCEINLINE void store(storage_type volatile& storage, storage_type v, memory_order order) BOOST_NOEXCEPT { fence_before_store(order); storage = v; fence_after_store(order); } static BOOST_FORCEINLINE storage_type load(storage_type const volatile& storage, memory_order order) BOOST_NOEXCEPT { storage_type v = storage; fence_after_load(order); return v; } static BOOST_FORCEINLINE bool compare_exchange_strong( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order success_order, memory_order failure_order) BOOST_NOEXCEPT { while (true) { storage_type tmp = expected; if (compare_exchange_weak(storage, tmp, desired, success_order, failure_order)) return true; if (tmp != expected) { expected = tmp; return false; } } } static BOOST_FORCEINLINE bool compare_exchange_weak( storage_type volatile& storage, storage_type& expected, storage_type desired, memory_order, memory_order) BOOST_NOEXCEPT { typedef storage_type (*kernel_cmpxchg32_t)(storage_type oldval, storage_type newval, volatile storage_type* ptr); if (((kernel_cmpxchg32_t)0xffff0fc0)(expected, desired, &storage) == 0) { return true; } else { expected = storage; return false; } } static BOOST_FORCEINLINE bool is_lock_free(storage_type const volatile&) BOOST_NOEXCEPT { return true; } }; template< bool Signed > struct operations< 1u, Signed > : public extending_cas_based_operations< cas_based_operations< cas_based_exchange< linux_arm_cas< Signed > > >, 1u, Signed > { }; template< bool Signed > struct operations< 2u, Signed > : public extending_cas_based_operations< cas_based_operations< cas_based_exchange< linux_arm_cas< Signed > > >, 2u, Signed > { }; template< bool Signed > struct operations< 4u, Signed > : public cas_based_operations< cas_based_exchange< linux_arm_cas< Signed > > > { }; BOOST_FORCEINLINE void thread_fence(memory_order order) BOOST_NOEXCEPT { if (order != memory_order_relaxed) linux_arm_cas_base::hardware_full_fence(); } BOOST_FORCEINLINE void signal_fence(memory_order order) BOOST_NOEXCEPT { if (order != memory_order_relaxed) __asm__ __volatile__ ("" ::: "memory"); } } // namespace detail } // namespace atomics } // namespace boost #endif // BOOST_ATOMIC_DETAIL_OPS_LINUX_ARM_HPP_INCLUDED_