#include "Modulator.hpp" #include #include #include #include #include "mainwindow.h" #include "soundout.h" #include "commons.h" #include "DriftingDateTime.h" #include "moc_Modulator.cpp" extern float gran(); // Noise generator (for tests only) #define RAMP_INCREMENT 64 // MUST be an integral factor of 2^16 #if defined (WSJT_SOFT_KEYING) # define SOFT_KEYING WSJT_SOFT_KEYING #else # define SOFT_KEYING 1 #endif double constexpr Modulator::m_twoPi; // float wpm=20.0; // unsigned m_nspd=1.2*48000.0/wpm; // m_nspd=3072; //18.75 WPM Modulator::Modulator (unsigned frameRate, unsigned periodLengthInSeconds, QObject * parent) : AudioDevice {parent} , m_quickClose {false} , m_phi {0.0} , m_toneSpacing {0.0} , m_fSpread {0.0} , m_frameRate {frameRate} , m_period {periodLengthInSeconds} , m_state {Idle} , m_tuning {false} , m_cwLevel {false} , m_j0 {-1} , m_toneFrequency0 {1500.0} { } void Modulator::start (unsigned symbolsLength, double framesPerSymbol, double frequency, double toneSpacing, SoundOutput * stream, Channel channel, bool synchronize, bool fastMode, double dBSNR, int TRperiod) { Q_ASSERT (stream); // Time according to this computer which becomes our base time qint64 ms0 = DriftingDateTime::currentMSecsSinceEpoch() % 86400000; if (m_state != Idle) { stop (); } m_quickClose = false; m_symbolsLength = symbolsLength; m_isym0 = std::numeric_limits::max (); // big number m_frequency0 = 0.; m_phi = 0.; m_addNoise = dBSNR < 0.; m_nsps = framesPerSymbol; m_frequency = frequency; m_amp = std::numeric_limits::max (); m_toneSpacing = toneSpacing; m_bFastMode=fastMode; m_TRperiod=TRperiod; unsigned delay_ms = 0; if(m_TRperiod == JS8A_TX_SECONDS){ delay_ms = JS8A_START_DELAY_MS; } else if(m_TRperiod == JS8B_TX_SECONDS){ delay_ms = JS8B_START_DELAY_MS; } else if(m_TRperiod == JS8C_TX_SECONDS){ delay_ms = JS8C_START_DELAY_MS; } else if(m_TRperiod == JS8E_TX_SECONDS){ delay_ms = JS8E_START_DELAY_MS; } // noise generator parameters if (m_addNoise) { m_snr = qPow (10.0, 0.05 * (dBSNR - 6.0)); m_fac = 3000.0; if (m_snr > 1.0) m_fac = 3000.0 / m_snr; } unsigned mstr = ms0 % (1000 * m_period); // ms in period // round up to an exact portion of a second that allows for startup // delays m_ic = (mstr / delay_ms) * m_frameRate * delay_ms / 1000; if(m_bFastMode) m_ic=0; m_silentFrames = 0; // calculate number of silent frames to send, so that audio will start at // the nominal time "delay_ms" into the Tx sequence. if (synchronize && !m_tuning && !m_bFastMode) { m_silentFrames = m_ic + m_frameRate / (1000 / delay_ms) - (mstr * (m_frameRate / 1000)); } initialize (QIODevice::ReadOnly, channel); Q_EMIT stateChanged ((m_state = (synchronize && m_silentFrames) ? Synchronizing : Active)); m_stream = stream; if (m_stream) m_stream->restart (this); } void Modulator::tune (bool newState) { m_tuning = newState; if (!m_tuning) stop (true); } void Modulator::stop (bool quick) { m_quickClose = quick; close (); } void Modulator::close () { if (m_stream) { if (m_quickClose) { m_stream->reset (); } else { m_stream->stop (); } } if (m_state != Idle) { Q_EMIT stateChanged ((m_state = Idle)); } AudioDevice::close (); } qint64 Modulator::readData (char * data, qint64 maxSize) { double toneFrequency=1500.0; if(m_nsps==6) { toneFrequency=1000.0; m_frequency=1000.0; m_frequency0=1000.0; } if(maxSize==0) return 0; Q_ASSERT (!(maxSize % qint64 (bytesPerFrame ()))); // no torn frames Q_ASSERT (isOpen ()); qint64 numFrames (maxSize / bytesPerFrame ()); qint16 * samples (reinterpret_cast (data)); qint16 * end (samples + numFrames * (bytesPerFrame () / sizeof (qint16))); qint64 framesGenerated (0); switch (m_state) { case Synchronizing: { if (m_silentFrames) { // send silence up to first second framesGenerated = qMin (m_silentFrames, numFrames); for ( ; samples != end; samples = load (0, samples)) { // silence } m_silentFrames -= framesGenerated; return framesGenerated * bytesPerFrame (); } Q_EMIT stateChanged ((m_state = Active)); m_cwLevel = false; m_ramp = 0; // prepare for CW wave shaping } // fall through case Active: { unsigned int isym=0; // qDebug() << "Mod A" << m_toneSpacing << m_ic; if(!m_tuning) isym=m_ic/(4.0*m_nsps); // Actual fsample=48000 bool slowCwId=((isym >= m_symbolsLength) && (icw[0] > 0)) && (!m_bFastMode); if(m_TRperiod==3) slowCwId=false; bool fastCwId=false; static bool bCwId=false; qint64 ms = DriftingDateTime::currentMSecsSinceEpoch(); float tsec=0.001*(ms % (1000*m_TRperiod)); if(m_bFastMode and (icw[0]>0) and (tsec>(m_TRperiod-5.0))) fastCwId=true; if(!m_bFastMode) m_nspd=2560; // 22.5 WPM if(slowCwId or fastCwId) { // Transmit CW ID? m_dphi = m_twoPi*m_frequency/m_frameRate; if(m_bFastMode and !bCwId) { m_frequency=1500; // Set params for CW ID m_dphi = m_twoPi*m_frequency/m_frameRate; m_symbolsLength=126; m_nsps=4096.0*12000.0/11025.0; m_ic=2246949; m_nspd=2560; // 22.5 WPM if(icw[0]*m_nspd/48000.0 > 4.0) m_nspd=4.0*48000.0/icw[0]; //Faster CW for long calls } bCwId=true; unsigned ic0 = m_symbolsLength * 4 * m_nsps; unsigned j(0); while (samples != end) { j = (m_ic - ic0)/m_nspd + 1; // symbol of this sample bool level {bool (icw[j])}; m_phi += m_dphi; if (m_phi > m_twoPi) m_phi -= m_twoPi; qint16 sample=0; float amp=32767.0; float x=0; if(m_ramp!=0) { x=qSin(float(m_phi)); if(SOFT_KEYING) { amp=qAbs(qint32(m_ramp)); if(amp>32767.0) amp=32767.0; } sample=round(amp*x); } if(m_bFastMode) { sample=0; if(level) sample=32767.0*x; } if (int (j) <= icw[0] && j < NUM_CW_SYMBOLS) { // stop condition samples = load (postProcessSample (sample), samples); ++framesGenerated; ++m_ic; } else { Q_EMIT stateChanged ((m_state = Idle)); return framesGenerated * bytesPerFrame (); } // adjust ramp if ((m_ramp != 0 && m_ramp != std::numeric_limits::min ()) || level != m_cwLevel) { // either ramp has terminated at max/min or direction has changed m_ramp += RAMP_INCREMENT; // ramp } m_cwLevel = level; } return framesGenerated * bytesPerFrame (); } else { bCwId=false; } //End of code for CW ID double const baud (12000.0 / m_nsps); // fade out parameters (no fade out for tuning) unsigned int i0,i1; if(m_tuning) { i1 = i0 = (m_bFastMode ? 999999 : 9999) * m_nsps; } else { i0=(m_symbolsLength - 0.017) * 4.0 * m_nsps; i1= m_symbolsLength * 4.0 * m_nsps; } if(m_bFastMode and !m_tuning) { i1=m_TRperiod*48000 - 24000; i0=i1-816; } qint16 sample; for (unsigned i = 0; i < numFrames && m_ic <= i1; ++i) { isym=0; if(!m_tuning and m_TRperiod!=3) isym=m_ic / (4.0 * m_nsps); //Actual //fsample=48000 if(m_bFastMode) isym=isym%m_symbolsLength; if (isym != m_isym0 || m_frequency != m_frequency0) { if(itone[0]>=100) { m_toneFrequency0=itone[0]; } else { if(m_toneSpacing==0.0) { m_toneFrequency0=m_frequency + itone[isym]*baud; } else { m_toneFrequency0=m_frequency + itone[isym]*m_toneSpacing; } } // qDebug() << "Mod B" << m_bFastMode << m_ic << numFrames << isym << itone[isym] // << m_toneFrequency0 << m_nsps; m_dphi = m_twoPi * m_toneFrequency0 / m_frameRate; m_isym0 = isym; m_frequency0 = m_frequency; //??? } int j=m_ic/480; if(m_fSpread>0.0 and j!=m_j0) { float x1=(float)qrand()/RAND_MAX; float x2=(float)qrand()/RAND_MAX; toneFrequency = m_toneFrequency0 + 0.5*m_fSpread*(x1+x2-1.0); m_dphi = m_twoPi * toneFrequency / m_frameRate; m_j0=j; } m_phi += m_dphi; if (m_phi > m_twoPi) m_phi -= m_twoPi; if (m_ic > i0) m_amp = 0.98 * m_amp; if (m_ic > i1) m_amp = 0.0; sample=qRound(m_amp*qSin(m_phi)); #if TEST_FOX_WAVE_GEN if(m_toneSpacing < 0) sample=qRound(m_amp*foxcom_.wave[m_ic]); #endif samples = load(postProcessSample(sample), samples); ++framesGenerated; ++m_ic; } if (m_amp == 0.0) { // TODO G4WJS: compare double with zero might not be wise if (icw[0] == 0) { // no CW ID to send Q_EMIT stateChanged ((m_state = Idle)); return framesGenerated * bytesPerFrame (); } m_phi = 0.0; } m_frequency0 = m_frequency; // done for this chunk - continue on next call return framesGenerated * bytesPerFrame (); } // fall through case Idle: break; } Q_ASSERT (Idle == m_state); return 0; } qint16 Modulator::postProcessSample (qint16 sample) const { if (m_addNoise) { // Test frame, we'll add noise qint32 s = m_fac * (gran () + sample * m_snr / 32768.0); if (s > std::numeric_limits::max ()) { s = std::numeric_limits::max (); } if (s < std::numeric_limits::min ()) { s = std::numeric_limits::min (); } sample = s; } return sample; }