subroutine osd174(llr,apmask,norder,decoded,cw,nhardmin,dmin) ! ! An ordered-statistics decoder for the (174,87) code. ! include "ldpc_174_87_params.f90" integer*1 apmask(N),apmaskr(N) integer*1 gen(K,N) integer*1 genmrb(K,N),g2(N,K) integer*1 temp(K),m0(K),me(K),mi(K),misub(K),e2sub(N-K),e2(N-K) integer indices(N),nxor(N) integer*1 cw(N),ce(N),c0(N),hdec(N) integer*1 decoded(K) integer indx(N) real llr(N),rx(N),absrx(N) logical first data first/.true./ save first,gen if( first ) then ! fill the generator matrix gen=0 do i=1,M do j=1,22 read(g(i)(j:j),"(Z1)") istr do jj=1, 4 irow=(j-1)*4+jj if( btest(istr,4-jj) ) gen(irow,i)=1 enddo enddo enddo do irow=1,K gen(irow,M+irow)=1 enddo first=.false. endif ! Re-order received vector to place systematic msg bits at the end. rx=llr(colorder+1) apmaskr=apmask(colorder+1) ! Hard decisions on the received word. hdec=0 where(rx .ge. 0) hdec=1 ! Use magnitude of received symbols as a measure of reliability. absrx=abs(rx) call indexx(absrx,N,indx) ! Re-order the columns of the generator matrix in order of decreasing reliability. do i=1,N genmrb(1:K,i)=gen(1:K,indx(N+1-i)) indices(i)=indx(N+1-i) enddo ! Do gaussian elimination to create a generator matrix with the most reliable ! received bits in positions 1:K in order of decreasing reliability (more or less). do id=1,K ! diagonal element indices do icol=id,K+20 ! The 20 is ad hoc - beware iflag=0 if( genmrb(id,icol) .eq. 1 ) then iflag=1 if( icol .ne. id ) then ! reorder column temp(1:K)=genmrb(1:K,id) genmrb(1:K,id)=genmrb(1:K,icol) genmrb(1:K,icol)=temp(1:K) itmp=indices(id) indices(id)=indices(icol) indices(icol)=itmp endif do ii=1,K if( ii .ne. id .and. genmrb(ii,id) .eq. 1 ) then genmrb(ii,1:N)=ieor(genmrb(ii,1:N),genmrb(id,1:N)) endif enddo exit endif enddo enddo g2=transpose(genmrb) ! The hard decisions for the K MRB bits define the order 0 message, m0. ! Encode m0 using the modified generator matrix to find the "order 0" codeword. ! Flip various combinations of bits in m0 and re-encode to generate a list of ! codewords. A pre-processing step selects a subset of these codewords. ! Return the member of the subset with the smallest Euclidean distance to the ! the received word. hdec=hdec(indices) ! hard decisions from received symbols m0=hdec(1:K) ! zero'th order message absrx=absrx(indices) rx=rx(indices) apmaskr=apmaskr(indices) call mrbencode(m0,c0,g2,N,K) nxor=ieor(c0,hdec) nhardmin=sum(nxor) dmin=sum(nxor*absrx) cw=c0 ntotal=0 nrejected=0 nt=40 ! Count the errors in the nt best bits in the redundancy part of the cw ntheta=12 ! Reject the codeword without computing distance if # errors exceeds ntheta ! norder should be 1, 2, or 3. ! if norder = 1, do one loop, no pre-processing ! if norder = 2, do norder=1, then norder=2 using first W&H pre-processing rule ! if norder = 3, do norder=2, then norder=3 using first W&H pre-processing rule if(norder.lt.1) goto 998 ! norder=0 if(norder.gt.3) norder=3 if( norder.eq. 1) then nord=1 npre=0 elseif(norder.eq.2) then nord=1 npre=1 elseif(norder.eq.3) then nord=2 npre=1 endif do iorder=1,nord if( iorder.eq. 1 ) then misub(1:K-1)=0 misub(K)=1 iflag=K elseif( iorder.eq. 2 ) then misub(1:K-2)=0 misub(K-1:K)=1 iflag=K-1 endif do while(iflag .ge.0) if(iorder.eq.nord .and. npre.eq.0) then iend=iflag else iend=1 endif do n1=iflag,iend,-1 mi=misub mi(n1)=1 if(any(iand(apmaskr(1:K),mi).eq.1)) cycle ntotal=ntotal+1 me=ieor(m0,mi) if(n1.eq.iflag) then call mrbencode(me,ce,g2,N,K) e2sub=ieor(ce(K+1:N),hdec(K+1:N)) e2=e2sub nd1Kpt=sum(e2sub(1:nt))+1 d1=sum(ieor(me(1:K),hdec(1:K))*absrx(1:K)) else e2=ieor(e2sub,g2(K+1:N,n1)) nd1Kpt=sum(e2(1:nt))+2 endif if(nd1Kpt .le. ntheta) then call mrbencode(me,ce,g2,N,K) nxor=ieor(ce,hdec) if(n1.eq.iflag) then dd=d1+sum(e2sub*absrx(K+1:N)) else dd=d1+ieor(ce(n1),hdec(n1))*absrx(n1)+sum(e2*absrx(K+1:N)) endif if( dd .lt. dmin ) then dmin=dd cw=ce nhardmin=sum(nxor) nd1Kptbest=nd1Kpt endif else nrejected=nrejected+1 endif enddo ! Get the next test error pattern, iflag will go negative ! when the last pattern with weight iorder has been generated. call nextpat(misub,k,iorder,iflag) enddo enddo !write(*,*) 'rejected, total, nd1Kptbest: ',nrejected, ntotal, nd1Kptbest 998 continue ! Re-order the codeword to place message bits at the end. cw(indices)=cw hdec(indices)=hdec decoded=cw(K+1:N) cw(colorder+1)=cw ! put the codeword back into received-word order return end subroutine osd174 subroutine mrbencode(me,codeword,g2,N,K) integer*1 me(K),codeword(N),g2(N,K) ! fast encoding for low-weight test patterns codeword=0 do i=1,K if( me(i) .eq. 1 ) then codeword=ieor(codeword,g2(1:N,i)) endif enddo return end subroutine mrbencode subroutine nextpat(mi,k,iorder,iflag) integer*1 mi(k),ms(k) ! generate the next test error pattern ind=-1 do i=1,k-1 if( mi(i).eq.0 .and. mi(i+1).eq.1) ind=i enddo if( ind .lt. 0 ) then ! no more patterns of this order iflag=ind return endif ms=0 ms(1:ind-1)=mi(1:ind-1) ms(ind)=1 ms(ind+1)=0 if( ind+1 .lt. k ) then nz=iorder-sum(ms) ms(k-nz+1:k)=1 endif mi=ms do i=1,k ! iflag will point to the lowest-index 1 in mi if(mi(i).eq.1) then iflag=i exit endif enddo return end subroutine nextpat