//---------------------------------------------------------------------------// // Copyright (c) 2013 Kyle Lutz // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // // See http://boostorg.github.com/compute for more information. //---------------------------------------------------------------------------// #ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP #define BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP #include #include #include #include #include #include #include #include #include #include namespace boost { namespace compute { namespace detail { template inline InputIterator find_if_with_atomics_one_vpt(InputIterator first, InputIterator last, UnaryPredicate predicate, const size_t count, command_queue &queue) { typedef typename std::iterator_traits::value_type value_type; typedef typename std::iterator_traits::difference_type difference_type; const context &context = queue.get_context(); detail::meta_kernel k("find_if"); size_t index_arg = k.add_arg(memory_object::global_memory, "index"); atomic_min atomic_min_uint; k << k.decl("i") << " = get_global_id(0);\n" << k.decl("value") << "=" << first[k.var("i")] << ";\n" << "if(" << predicate(k.var("value")) << "){\n" << " " << atomic_min_uint(k.var("index"), k.var("i")) << ";\n" << "}\n"; kernel kernel = k.compile(context); scalar index(context); kernel.set_arg(index_arg, index.get_buffer()); // initialize index to the last iterator's index index.write(static_cast(count), queue); queue.enqueue_1d_range_kernel(kernel, 0, count, 0); // read index and return iterator return first + static_cast(index.read(queue)); } template inline InputIterator find_if_with_atomics_multiple_vpt(InputIterator first, InputIterator last, UnaryPredicate predicate, const size_t count, const size_t vpt, command_queue &queue) { typedef typename std::iterator_traits::value_type value_type; typedef typename std::iterator_traits::difference_type difference_type; const context &context = queue.get_context(); const device &device = queue.get_device(); detail::meta_kernel k("find_if"); size_t index_arg = k.add_arg(memory_object::global_memory, "index"); size_t count_arg = k.add_arg("count"); size_t vpt_arg = k.add_arg("vpt"); atomic_min atomic_min_uint; // for GPUs reads from global memory are coalesced if(device.type() & device::gpu) { k << k.decl("lsize") << " = get_local_size(0);\n" << k.decl("id") << " = get_local_id(0) + get_group_id(0) * lsize * vpt;\n" << k.decl("end") << " = min(" << "id + (lsize *" << k.var("vpt") << ")," << "count" << ");\n" << // checking if the index is already found "__local uint local_index;\n" << "if(get_local_id(0) == 0){\n" << " local_index = *index;\n " << "};\n" << "barrier(CLK_LOCAL_MEM_FENCE);\n" << "if(local_index < id){\n" << " return;\n" << "}\n" << "while(id < end){\n" << " " << k.decl("value") << " = " << first[k.var("id")] << ";\n" " if(" << predicate(k.var("value")) << "){\n" << " " << atomic_min_uint(k.var("index"), k.var("id")) << ";\n" << " return;\n" " }\n" << " id+=lsize;\n" << "}\n"; // for CPUs (and other devices) reads are ordered so the big cache is // efficiently used. } else { k << k.decl("id") << " = get_global_id(0) * " << k.var("vpt") << ";\n" << k.decl("end") << " = min(" << "id + " << k.var("vpt") << "," << "count" << ");\n" << "while(id < end && (*index) > id){\n" << " " << k.decl("value") << " = " << first[k.var("id")] << ";\n" " if(" << predicate(k.var("value")) << "){\n" << " " << atomic_min_uint(k.var("index"), k.var("id")) << ";\n" << " return;\n" << " }\n" << " id++;\n" << "}\n"; } kernel kernel = k.compile(context); scalar index(context); kernel.set_arg(index_arg, index.get_buffer()); kernel.set_arg(count_arg, static_cast(count)); kernel.set_arg(vpt_arg, static_cast(vpt)); // initialize index to the last iterator's index index.write(static_cast(count), queue); const size_t global_wg_size = static_cast( std::ceil(float(count) / vpt) ); queue.enqueue_1d_range_kernel(kernel, 0, global_wg_size, 0); // read index and return iterator return first + static_cast(index.read(queue)); } template inline InputIterator find_if_with_atomics(InputIterator first, InputIterator last, UnaryPredicate predicate, command_queue &queue) { typedef typename std::iterator_traits::value_type value_type; size_t count = detail::iterator_range_size(first, last); if(count == 0){ return last; } const device &device = queue.get_device(); // load cached parameters std::string cache_key = std::string("__boost_find_if_with_atomics_") + type_name(); boost::shared_ptr parameters = detail::parameter_cache::get_global_cache(device); // for relatively small inputs on GPUs kernel checking one value per thread // (work-item) is more efficient than its multiple values per thread version if(device.type() & device::gpu){ const size_t one_vpt_threshold = parameters->get(cache_key, "one_vpt_threshold", 1048576); if(count <= one_vpt_threshold){ return find_if_with_atomics_one_vpt( first, last, predicate, count, queue ); } } // values per thread size_t vpt; if(device.type() & device::gpu){ // get vpt parameter vpt = parameters->get(cache_key, "vpt", 32); } else { // for CPUs work is split equally between compute units const size_t max_compute_units = device.get_info(); vpt = static_cast( std::ceil(float(count) / max_compute_units) ); } return find_if_with_atomics_multiple_vpt( first, last, predicate, count, vpt, queue ); } } // end detail namespace } // end compute namespace } // end boost namespace #endif // BOOST_COMPUTE_ALGORITHM_DETAIL_FIND_IF_WITH_ATOMICS_HPP