//---------------------------------------------------------------------------// // Copyright (c) 2016 Jakub Szuppe // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // // See http://boostorg.github.com/compute for more information. //---------------------------------------------------------------------------// #ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_MERGE_SORT_ON_GPU_HPP_ #define BOOST_COMPUTE_ALGORITHM_DETAIL_MERGE_SORT_ON_GPU_HPP_ #include #include #include #include #include #include #include #include namespace boost { namespace compute { namespace detail { template inline size_t pick_bitonic_block_sort_block_size(size_t proposed_wg, size_t lmem_size, bool sort_by_key) { size_t n = proposed_wg; size_t lmem_required = n * sizeof(KeyType); if(sort_by_key) { lmem_required += n * sizeof(ValueType); } // try to force at least 4 work-groups of >64 elements // for better occupancy while(lmem_size < (lmem_required * 4) && (n > 64)) { n /= 2; lmem_required = n * sizeof(KeyType); } while(lmem_size < lmem_required && (n != 1)) { n /= 2; if(n < 1) n = 1; lmem_required = n * sizeof(KeyType); } if(n < 2) { return 1; } else if(n < 4) { return 2; } else if(n < 8) { return 4; } else if(n < 16) { return 8; } else if(n < 32) { return 16; } else if(n < 64) { return 32; } else if(n < 128) { return 64; } else if(n < 256) { return 128; } else { return 256; } } /// Performs bitonic block sort according to \p compare. /// /// Since bitonic sort can be only performed when input size is equal to 2^n, /// in this case input size is block size (\p work_group_size), we would have /// to require \p count be a exact multiple of block size. That would not be /// great. /// Instead, bitonic sort kernel is merged with odd-even merge sort so if the /// last block is not equal to 2^n (where n is some natural number) the odd-even /// sort is performed for that block. That way bitonic_block_sort() works for /// input of any size. Block size (\p work_group_size) still have to be equal /// to 2^n. /// /// This is NOT stable. /// /// \param keys_first first key element in the range to sort /// \param values_first first value element in the range to sort /// \param compare comparison function for keys /// \param count number of elements in the range; count > 0 /// \param work_group_size size of the work group, also the block size; must be /// equal to n^2 where n is natural number /// \param queue command queue to perform the operation template inline size_t bitonic_block_sort(KeyIterator keys_first, ValueIterator values_first, Compare compare, const size_t count, const bool sort_by_key, command_queue &queue) { typedef typename std::iterator_traits::value_type key_type; meta_kernel k("bitonic_block_sort"); size_t count_arg = k.add_arg("count"); size_t local_keys_arg = k.add_arg(memory_object::local_memory, "lkeys"); size_t local_vals_arg = 0; if(sort_by_key) { local_vals_arg = k.add_arg(memory_object::local_memory, "lidx"); } k << // Work item global and local ids k.decl("gid") << " = get_global_id(0);\n" << k.decl("lid") << " = get_local_id(0);\n"; // declare my_key and my_value k << k.decl("my_key") << ";\n"; // Instead of copying values (my_value) in local memory with keys // we save local index (uchar) and copy my_value at the end at // final index. This saves local memory. if(sort_by_key) { k << k.decl("my_index") << " = (uchar)(lid);\n"; } // load key k << "if(gid < count) {\n" << k.var("my_key") << " = " << keys_first[k.var("gid")] << ";\n" << "}\n"; // load key and index to local memory k << "lkeys[lid] = my_key;\n"; if(sort_by_key) { k << "lidx[lid] = my_index;\n"; } k << k.decl("offset") << " = get_group_id(0) * get_local_size(0);\n" << k.decl("n") << " = min((uint)(get_local_size(0)),(count - offset));\n"; // When work group size is a power of 2 bitonic sorter can be used; // otherwise, slower odd-even sort is used. k << // check if n is power of 2 "if(((n != 0) && ((n & (~n + 1)) == n))) {\n"; // bitonic sort, not stable k << // wait for keys and vals to be stored in local memory "barrier(CLK_LOCAL_MEM_FENCE);\n" << "#pragma unroll\n" << "for(" << k.decl("length") << " = 1; " << "length < n; " << "length <<= 1" << ") {\n" << // direction of sort: false -> asc, true -> desc k.decl("direction") << "= ((lid & (length<<1)) != 0);\n" << "for(" << k.decl("k") << " = length; " << "k > 0; " << "k >>= 1" << ") {\n" << // sibling to compare with my key k.decl("sibling_idx") << " = lid ^ k;\n" << k.decl("sibling_key") << " = lkeys[sibling_idx];\n" << k.decl("compare") << " = " << compare(k.var("sibling_key"), k.var("my_key")) << ";\n" << k.decl("swap") << " = compare ^ (sibling_idx < lid) ^ direction;\n" << "my_key = swap ? sibling_key : my_key;\n"; if(sort_by_key) { k << "my_index = swap ? lidx[sibling_idx] : my_index;\n"; } k << "barrier(CLK_LOCAL_MEM_FENCE);\n" << "lkeys[lid] = my_key;\n"; if(sort_by_key) { k << "lidx[lid] = my_index;\n"; } k << "barrier(CLK_LOCAL_MEM_FENCE);\n" << "}\n" << "}\n"; // end of bitonic sort // odd-even sort, not stable k << "}\n" << "else { \n"; k << k.decl("lid_is_even") << " = (lid%2) == 0;\n" << k.decl("oddsibling_idx") << " = " << "(lid_is_even) ? max(lid,(uint)(1)) - 1 : min(lid+1,n-1);\n" << k.decl("evensibling_idx") << " = " << "(lid_is_even) ? min(lid+1,n-1) : max(lid,(uint)(1)) - 1;\n" << // wait for keys and vals to be stored in local memory "barrier(CLK_LOCAL_MEM_FENCE);\n" << "#pragma unroll\n" << "for(" << k.decl("i") << " = 0; " << "i < n; " << "i++" << ") {\n" << k.decl("sibling_idx") << " = i%2 == 0 ? evensibling_idx : oddsibling_idx;\n" << k.decl("sibling_key") << " = lkeys[sibling_idx];\n" << k.decl("compare") << " = " << compare(k.var("sibling_key"), k.var("my_key")) << ";\n" << k.decl("swap") << " = compare ^ (sibling_idx < lid);\n" << "my_key = swap ? sibling_key : my_key;\n"; if(sort_by_key) { k << "my_index = swap ? lidx[sibling_idx] : my_index;\n"; } k << "barrier(CLK_LOCAL_MEM_FENCE);\n" << "lkeys[lid] = my_key;\n"; if(sort_by_key) { k << "lidx[lid] = my_index;\n"; } k << "barrier(CLK_LOCAL_MEM_FENCE);\n" "}\n" << // for "}\n"; // else // end of odd-even sort // save key and value k << "if(gid < count) {\n" << keys_first[k.var("gid")] << " = " << k.var("my_key") << ";\n"; if(sort_by_key) { k << values_first[k.var("gid")] << " = " << values_first[k.var("offset + my_index")] << ";\n"; } k << // end if "}\n"; const context &context = queue.get_context(); const device &device = queue.get_device(); ::boost::compute::kernel kernel = k.compile(context); const size_t work_group_size = pick_bitonic_block_sort_block_size( kernel.get_work_group_info( device, CL_KERNEL_WORK_GROUP_SIZE ), device.get_info(CL_DEVICE_LOCAL_MEM_SIZE), sort_by_key ); const size_t global_size = work_group_size * static_cast( std::ceil(float(count) / work_group_size) ); kernel.set_arg(count_arg, static_cast(count)); kernel.set_arg(local_keys_arg, local_buffer(work_group_size)); if(sort_by_key) { kernel.set_arg(local_vals_arg, local_buffer(work_group_size)); } queue.enqueue_1d_range_kernel(kernel, 0, global_size, work_group_size); // return size of the block return work_group_size; } template inline size_t block_sort(KeyIterator keys_first, ValueIterator values_first, Compare compare, const size_t count, const bool sort_by_key, const bool stable, command_queue &queue) { if(stable) { // TODO: Implement stable block sort (stable odd-even merge sort) return size_t(1); } return bitonic_block_sort( keys_first, values_first, compare, count, sort_by_key, queue ); } /// space: O(n + m); n - number of keys, m - number of values template inline void merge_blocks_on_gpu(KeyIterator keys_first, ValueIterator values_first, KeyIterator out_keys_first, ValueIterator out_values_first, Compare compare, const size_t count, const size_t block_size, const bool sort_by_key, command_queue &queue) { typedef typename std::iterator_traits::value_type key_type; typedef typename std::iterator_traits::value_type value_type; meta_kernel k("merge_blocks"); size_t count_arg = k.add_arg("count"); size_t block_size_arg = k.add_arg("block_size"); k << // get global id k.decl("gid") << " = get_global_id(0);\n" << "if(gid >= count) {\n" << "return;\n" << "}\n" << k.decl("my_key") << " = " << keys_first[k.var("gid")] << ";\n"; if(sort_by_key) { k << k.decl("my_value") << " = " << values_first[k.var("gid")] << ";\n"; } k << // get my block idx k.decl("my_block_idx") << " = gid / block_size;\n" << k.decl("my_block_idx_is_odd") << " = " << "my_block_idx & 0x1;\n" << k.decl("other_block_idx") << " = " << // if(my_block_idx is odd) {} else {} "my_block_idx_is_odd ? my_block_idx - 1 : my_block_idx + 1;\n" << // get ranges of my block and the other block // [my_block_start; my_block_end) // [other_block_start; other_block_end) k.decl("my_block_start") << " = " << "min(my_block_idx * block_size, count);\n" << // including k.decl("my_block_end") << " = " << "min((my_block_idx + 1) * block_size, count);\n" << // excluding k.decl("other_block_start") << " = " << "min(other_block_idx * block_size, count);\n" << // including k.decl("other_block_end") << " = " << "min((other_block_idx + 1) * block_size, count);\n" << // excluding // other block is empty, nothing to merge here "if(other_block_start == count){\n" << out_keys_first[k.var("gid")] << " = my_key;\n"; if(sort_by_key) { k << out_values_first[k.var("gid")] << " = my_value;\n"; } k << "return;\n" << "}\n" << // lower bound // left_idx - lower bound k.decl("left_idx") << " = other_block_start;\n" << k.decl("right_idx") << " = other_block_end;\n" << "while(left_idx < right_idx) {\n" << k.decl("mid_idx") << " = (left_idx + right_idx) / 2;\n" << k.decl("mid_key") << " = " << keys_first[k.var("mid_idx")] << ";\n" << k.decl("smaller") << " = " << compare(k.var("mid_key"), k.var("my_key")) << ";\n" << "left_idx = smaller ? mid_idx + 1 : left_idx;\n" << "right_idx = smaller ? right_idx : mid_idx;\n" << "}\n" << // left_idx is found position in other block // if my_block is odd we need to get the upper bound "right_idx = other_block_end;\n" << "if(my_block_idx_is_odd && left_idx != right_idx) {\n" << k.decl("upper_key") << " = " << keys_first[k.var("left_idx")] << ";\n" << "while(" << "!(" << compare(k.var("upper_key"), k.var("my_key")) << ") && " << "!(" << compare(k.var("my_key"), k.var("upper_key")) << ") && " << "left_idx < right_idx" << ")" << "{\n" << k.decl("mid_idx") << " = (left_idx + right_idx) / 2;\n" << k.decl("mid_key") << " = " << keys_first[k.var("mid_idx")] << ";\n" << k.decl("equal") << " = " << "!(" << compare(k.var("mid_key"), k.var("my_key")) << ") && " << "!(" << compare(k.var("my_key"), k.var("mid_key")) << ");\n" << "left_idx = equal ? mid_idx + 1 : left_idx + 1;\n" << "right_idx = equal ? right_idx : mid_idx;\n" << "upper_key = equal ? upper_key : " << keys_first[k.var("left_idx")] << ";\n" << "}\n" << "}\n" << k.decl("offset") << " = 0;\n" << "offset += gid - my_block_start;\n" << "offset += left_idx - other_block_start;\n" << "offset += min(my_block_start, other_block_start);\n" << out_keys_first[k.var("offset")] << " = my_key;\n"; if(sort_by_key) { k << out_values_first[k.var("offset")] << " = my_value;\n"; } const context &context = queue.get_context(); ::boost::compute::kernel kernel = k.compile(context); const size_t work_group_size = (std::min)( size_t(256), kernel.get_work_group_info( queue.get_device(), CL_KERNEL_WORK_GROUP_SIZE ) ); const size_t global_size = work_group_size * static_cast( std::ceil(float(count) / work_group_size) ); kernel.set_arg(count_arg, static_cast(count)); kernel.set_arg(block_size_arg, static_cast(block_size)); queue.enqueue_1d_range_kernel(kernel, 0, global_size, work_group_size); } template inline void merge_sort_by_key_on_gpu(KeyIterator keys_first, KeyIterator keys_last, ValueIterator values_first, Compare compare, bool stable, command_queue &queue) { typedef typename std::iterator_traits::value_type key_type; typedef typename std::iterator_traits::value_type value_type; size_t count = iterator_range_size(keys_first, keys_last); if(count < 2){ return; } size_t block_size = block_sort( keys_first, values_first, compare, count, true /* sort_by_key */, stable /* stable */, queue ); // for small input size only block sort is performed if(count <= block_size) { return; } const context &context = queue.get_context(); bool result_in_temporary_buffer = false; ::boost::compute::vector temp_keys(count, context); ::boost::compute::vector temp_values(count, context); for(; block_size < count; block_size *= 2) { result_in_temporary_buffer = !result_in_temporary_buffer; if(result_in_temporary_buffer) { merge_blocks_on_gpu(keys_first, values_first, temp_keys.begin(), temp_values.begin(), compare, count, block_size, true /* sort_by_key */, queue); } else { merge_blocks_on_gpu(temp_keys.begin(), temp_values.begin(), keys_first, values_first, compare, count, block_size, true /* sort_by_key */, queue); } } if(result_in_temporary_buffer) { copy_async(temp_keys.begin(), temp_keys.end(), keys_first, queue); copy_async(temp_values.begin(), temp_values.end(), values_first, queue); } } template inline void merge_sort_on_gpu(Iterator first, Iterator last, Compare compare, bool stable, command_queue &queue) { typedef typename std::iterator_traits::value_type key_type; size_t count = iterator_range_size(first, last); if(count < 2){ return; } Iterator dummy; size_t block_size = block_sort( first, dummy, compare, count, false /* sort_by_key */, stable /* stable */, queue ); // for small input size only block sort is performed if(count <= block_size) { return; } const context &context = queue.get_context(); bool result_in_temporary_buffer = false; ::boost::compute::vector temp_keys(count, context); for(; block_size < count; block_size *= 2) { result_in_temporary_buffer = !result_in_temporary_buffer; if(result_in_temporary_buffer) { merge_blocks_on_gpu(first, dummy, temp_keys.begin(), dummy, compare, count, block_size, false /* sort_by_key */, queue); } else { merge_blocks_on_gpu(temp_keys.begin(), dummy, first, dummy, compare, count, block_size, false /* sort_by_key */, queue); } } if(result_in_temporary_buffer) { copy_async(temp_keys.begin(), temp_keys.end(), first, queue); } } template inline void merge_sort_by_key_on_gpu(KeyIterator keys_first, KeyIterator keys_last, ValueIterator values_first, Compare compare, command_queue &queue) { merge_sort_by_key_on_gpu( keys_first, keys_last, values_first, compare, false /* not stable */, queue ); } template inline void merge_sort_on_gpu(Iterator first, Iterator last, Compare compare, command_queue &queue) { merge_sort_on_gpu( first, last, compare, false /* not stable */, queue ); } } // end detail namespace } // end compute namespace } // end boost namespace #endif /* BOOST_COMPUTE_ALGORITHM_DETAIL_MERGE_SORT_ON_GPU_HPP_ */