#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <iostream>

namespace
{
  char tx[6][10];
  int tx_table_2hr_slot=-1, tx_table_pctx=0;
};

int tx_band_sum(char bsum[10])
{
    int i,j;
    
    for (j=0; j<10; j++) {
        bsum[j]=0;
        for (i=0; i<6; i++) {
            bsum[j]=bsum[j]+tx[i][j];
        }
    }
    return 1;
}

int tx_add_to_band(int band)
{
    // add tx cycle to a band without regard to ntxlim
    int i,islot;
    for ( i=0; i<10; i++) {
        islot=rand()%6;
        if( tx[islot][band] != 1 ) {
            tx[islot][band]=1;
            return 1;
        }
    }
    return 0;
}

int tx_sum()
{
    int i,j,sum=0;
    for (i=0; i<6; i++) {
        for (j=0; j<10; j++) {
            sum=sum+tx[i][j];
        }
    }
    return sum;
}

int tx_add_one(char* tx)
{
    int i, j, txflag, ngap;
    // adds one tx slot to an existing array without
    // creating successive tx slots. 
    // try to fill largest gaps first  
    // try gap sizes of 13, 11, 9, 7, 5, and finally 3
    for (ngap=13; ngap>=3; ngap=ngap-2) {
        for (i=0; i< 60-ngap; i++) {
            txflag=0;
            for (j=0; j<ngap; j++) {
              if( tx[i+j]==1 ) 
                  txflag=1;
            }
            if( txflag == 0 ) { // found a gap of size ngap
                tx[i+ngap/2]=1;
                return 1;
            }
        }
    }
    // last resort - see if we can set the last slot to 1
    if( tx[58]==0 && tx[59]==0 ) {
      tx[59]=1;
      return 1;
    }
    return 0;
}

int tx_trim(char* tx, int ntxlim)
{
    /* ntxlim is max number of successive transmissions 
    * trim array so that ntxlim is not exceeded
    * also make sure that first slot is never a tx slot
    * this enures that we won't get a double tx because of the 
    * last slot of one table and the first slot of the next table
    * both being tx slots. 
    */
    int i,nrun,sum;

    if( tx[0] == 1 ) tx[0] = 0;
    nrun=0;
    for (i=0; i<60; i++) {
        if( tx[i]==1 ) {
            nrun++;
            if( nrun > ntxlim ) {
                tx[i]=0;
                nrun=0;
            }
        } else {
            nrun=0;
        }
    }
    sum=0;
    for (i=0; i<60; i++) {
        sum=sum+tx[i];
    }
    return sum;
}

void tx_print()
{
    int i,j;
    for (i=0; i<6; i++) {
        for (j=0; j<10; j++) {
            if( (i*10+j)%10 == 0 && i>=0 ) printf("\n");
            printf("%d ",tx[i][j]);
        }
    }
    printf("\n");
    fflush(stdout);
}

int create_tx_schedule(int pctx)
{
    char bsum[10];
    int i, j, k, sum, ntxlim, ntxbandmin, needed;
    int iflag, nrx;
    float rxavg,x;
    
    needed=60*(pctx/100.0)+0.5;
    
    memset(tx,0,sizeof(char)*60);
   
    if( pctx == 0 ) return 0;
 
    if( pctx <= 25 ) { // Use K1JT's algorithm in this regime
        rxavg=100.0/pctx-1.0;
        i=0; 
        while(1) {
            x=(rand()%100)/100.0;
            nrx=(rxavg+3.0*x-1.0); //2-5 for 25%
            i=i+nrx+1; 
            if( i < 60 ) {
                tx[i/10][i%10]=1;
            } else {
                break;
            }
        }
        return 0;
    } else if( pctx > 25 && pctx < 33 ) {
        ntxlim=1;
        ntxbandmin=1;
    } else if( pctx >= 33 && pctx < 50 ) {
        ntxlim=1;
        ntxbandmin=2;
    } else if( pctx >= 50 && pctx < 60 ) {
        ntxlim=2;
        ntxbandmin=3;
    } else {
        ntxlim=3;
        ntxbandmin=4;
    }
   
    // when txpct>25% create a table that guarantees that all
    // bands will be visited 1, 2, or 3 times, as appropriate. 
    //
    // start by filling each band slot with ntxbandmin tx's
    for (i=0; i<ntxbandmin; i++) {
        for (j=0; j<10; j++) {
            tx_add_to_band(j);
        }
    }
    // trim so that no more than ntxlim successive transmissions
    sum=tx_trim(*tx,ntxlim);
    j=0;
    iflag=0;
    while (j<100 && iflag==0) {
        // now backfill columns that got trimmed
        tx_band_sum(bsum);
        
        iflag=1;
        for (i=0; i<10; i++) {
            if( bsum[i] < ntxbandmin ) {
                iflag=0;
                for (k=0; k<ntxbandmin-bsum[i]; k++) {
                    tx_add_to_band(i);
                }
            }
        }
        sum=tx_trim(*tx,ntxlim);
        j++;
    }
    
    for(j=0; j < (needed-sum); j++ ) {
        tx_add_one(*tx); 
    }
    return 0;
}

int next_tx_state(int pctx)
{
  time_t now=time(0)+30;
  tm *ltm = gmtime(&now);
  int hour  = ltm->tm_hour;
  int minute = ltm->tm_min;

  int tx_2hr_slot = hour/2; 
  int tx_20min_slot = (hour-tx_2hr_slot*2)*3 + minute/20;
  int tx_2min_slot = (minute%20)/2;

  if( (tx_2hr_slot != tx_table_2hr_slot) || (tx_table_pctx != pctx) ) {
    create_tx_schedule(pctx);
    tx_table_2hr_slot = tx_2hr_slot;
    tx_table_pctx = pctx;
  }
  
//  tx_print();
  return tx[tx_20min_slot][tx_2min_slot];
}

int next_hopping_band()
{
  time_t now=time(0)+30;
  tm *ltm = gmtime(&now);
  int minute = ltm->tm_min;
  int tx_2min_slot = (minute%20)/2;
  return tx_2min_slot;
}