491 lines
17 KiB
Plaintext
491 lines
17 KiB
Plaintext
// Copyright John Maddock 2006.
|
|
// Copyright Paul A. Bristow 2006, 2012.
|
|
// Copyright Thomas Mang 2012.
|
|
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_STATS_STUDENTS_T_HPP
|
|
#define BOOST_STATS_STUDENTS_T_HPP
|
|
|
|
// http://en.wikipedia.org/wiki/Student%27s_t_distribution
|
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
|
|
|
|
#include <boost/math/distributions/fwd.hpp>
|
|
#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x).
|
|
#include <boost/math/distributions/complement.hpp>
|
|
#include <boost/math/distributions/detail/common_error_handling.hpp>
|
|
#include <boost/math/distributions/normal.hpp>
|
|
|
|
#include <utility>
|
|
|
|
#ifdef BOOST_MSVC
|
|
# pragma warning(push)
|
|
# pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
|
|
#endif
|
|
|
|
namespace boost{ namespace math{
|
|
|
|
template <class RealType = double, class Policy = policies::policy<> >
|
|
class students_t_distribution
|
|
{
|
|
public:
|
|
typedef RealType value_type;
|
|
typedef Policy policy_type;
|
|
|
|
students_t_distribution(RealType df) : df_(df)
|
|
{ // Constructor.
|
|
RealType result;
|
|
detail::check_df_gt0_to_inf( // Checks that df > 0 or df == inf.
|
|
"boost::math::students_t_distribution<%1%>::students_t_distribution", df_, &result, Policy());
|
|
} // students_t_distribution
|
|
|
|
RealType degrees_of_freedom()const
|
|
{
|
|
return df_;
|
|
}
|
|
|
|
// Parameter estimation:
|
|
static RealType find_degrees_of_freedom(
|
|
RealType difference_from_mean,
|
|
RealType alpha,
|
|
RealType beta,
|
|
RealType sd,
|
|
RealType hint = 100);
|
|
|
|
private:
|
|
// Data member:
|
|
RealType df_; // degrees of freedom is a real number or +infinity.
|
|
};
|
|
|
|
typedef students_t_distribution<double> students_t; // Convenience typedef for double version.
|
|
|
|
template <class RealType, class Policy>
|
|
inline const std::pair<RealType, RealType> range(const students_t_distribution<RealType, Policy>& /*dist*/)
|
|
{ // Range of permissible values for random variable x.
|
|
// NOT including infinity.
|
|
using boost::math::tools::max_value;
|
|
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline const std::pair<RealType, RealType> support(const students_t_distribution<RealType, Policy>& /*dist*/)
|
|
{ // Range of supported values for random variable x.
|
|
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
|
using boost::math::tools::max_value;
|
|
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType pdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
|
|
{
|
|
BOOST_FPU_EXCEPTION_GUARD
|
|
BOOST_MATH_STD_USING // for ADL of std functions.
|
|
|
|
RealType error_result;
|
|
if(false == detail::check_x(
|
|
"boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
|
|
return error_result;
|
|
RealType df = dist.degrees_of_freedom();
|
|
if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
|
|
"boost::math::pdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
|
|
return error_result;
|
|
|
|
RealType result;
|
|
if ((boost::math::isinf)(x))
|
|
{ // +infinity.
|
|
normal_distribution<RealType, Policy> n(0, 1);
|
|
result = pdf(n, x);
|
|
return result;
|
|
}
|
|
RealType limit = policies::get_epsilon<RealType, Policy>();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
limit = static_cast<RealType>(1) / limit; // 1/eps
|
|
// for 64-bit double 1/eps = 4503599627370496
|
|
if (df > limit)
|
|
{ // Special case for really big degrees_of_freedom > 1 / eps
|
|
// - use normal distribution which is much faster and more accurate.
|
|
normal_distribution<RealType, Policy> n(0, 1);
|
|
result = pdf(n, x);
|
|
}
|
|
else
|
|
{ //
|
|
RealType basem1 = x * x / df;
|
|
if(basem1 < 0.125)
|
|
{
|
|
result = exp(-boost::math::log1p(basem1, Policy()) * (1+df) / 2);
|
|
}
|
|
else
|
|
{
|
|
result = pow(1 / (1 + basem1), (df + 1) / 2);
|
|
}
|
|
result /= sqrt(df) * boost::math::beta(df / 2, RealType(0.5f), Policy());
|
|
}
|
|
return result;
|
|
} // pdf
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType cdf(const students_t_distribution<RealType, Policy>& dist, const RealType& x)
|
|
{
|
|
RealType error_result;
|
|
if(false == detail::check_x(
|
|
"boost::math::pdf(const students_t_distribution<%1%>&, %1%)", x, &error_result, Policy()))
|
|
return error_result;
|
|
RealType df = dist.degrees_of_freedom();
|
|
// Error check:
|
|
|
|
if(false == detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
|
|
"boost::math::cdf(const students_t_distribution<%1%>&, %1%)", df, &error_result, Policy()))
|
|
return error_result;
|
|
|
|
if (x == 0)
|
|
{ // Special case with exact result.
|
|
return static_cast<RealType>(0.5);
|
|
}
|
|
if ((boost::math::isinf)(x))
|
|
{ // +infinity.
|
|
normal_distribution<RealType, Policy> n(0, 1);
|
|
RealType result = cdf(n, x);
|
|
return result;
|
|
}
|
|
RealType limit = policies::get_epsilon<RealType, Policy>();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
limit = static_cast<RealType>(1) / limit; // 1/eps
|
|
// for 64-bit double 1/eps = 4503599627370496
|
|
if (df > limit)
|
|
{ // Special case for really big degrees_of_freedom > 1 / eps (perhaps infinite?)
|
|
// - use normal distribution which is much faster and more accurate.
|
|
normal_distribution<RealType, Policy> n(0, 1);
|
|
RealType result = cdf(n, x);
|
|
return result;
|
|
}
|
|
else
|
|
{ // normal df case.
|
|
//
|
|
// Calculate probability of Student's t using the incomplete beta function.
|
|
// probability = ibeta(degrees_of_freedom / 2, 1/2, degrees_of_freedom / (degrees_of_freedom + t*t))
|
|
//
|
|
// However when t is small compared to the degrees of freedom, that formula
|
|
// suffers from rounding error, use the identity formula to work around
|
|
// the problem:
|
|
//
|
|
// I[x](a,b) = 1 - I[1-x](b,a)
|
|
//
|
|
// and:
|
|
//
|
|
// x = df / (df + t^2)
|
|
//
|
|
// so:
|
|
//
|
|
// 1 - x = t^2 / (df + t^2)
|
|
//
|
|
RealType x2 = x * x;
|
|
RealType probability;
|
|
if(df > 2 * x2)
|
|
{
|
|
RealType z = x2 / (df + x2);
|
|
probability = ibetac(static_cast<RealType>(0.5), df / 2, z, Policy()) / 2;
|
|
}
|
|
else
|
|
{
|
|
RealType z = df / (df + x2);
|
|
probability = ibeta(df / 2, static_cast<RealType>(0.5), z, Policy()) / 2;
|
|
}
|
|
return (x > 0 ? 1 - probability : probability);
|
|
}
|
|
} // cdf
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType quantile(const students_t_distribution<RealType, Policy>& dist, const RealType& p)
|
|
{
|
|
BOOST_MATH_STD_USING // for ADL of std functions
|
|
//
|
|
// Obtain parameters:
|
|
RealType probability = p;
|
|
|
|
// Check for domain errors:
|
|
RealType df = dist.degrees_of_freedom();
|
|
static const char* function = "boost::math::quantile(const students_t_distribution<%1%>&, %1%)";
|
|
RealType error_result;
|
|
if(false == (detail::check_df_gt0_to_inf( // Check that df > 0 or == +infinity.
|
|
function, df, &error_result, Policy())
|
|
&& detail::check_probability(function, probability, &error_result, Policy())))
|
|
return error_result;
|
|
// Special cases, regardless of degrees_of_freedom.
|
|
if (probability == 0)
|
|
return -policies::raise_overflow_error<RealType>(function, 0, Policy());
|
|
if (probability == 1)
|
|
return policies::raise_overflow_error<RealType>(function, 0, Policy());
|
|
if (probability == static_cast<RealType>(0.5))
|
|
return 0; //
|
|
//
|
|
#if 0
|
|
// This next block is disabled in favour of a faster method than
|
|
// incomplete beta inverse, but code retained for future reference:
|
|
//
|
|
// Calculate quantile of Student's t using the incomplete beta function inverse:
|
|
//
|
|
probability = (probability > 0.5) ? 1 - probability : probability;
|
|
RealType t, x, y;
|
|
x = ibeta_inv(degrees_of_freedom / 2, RealType(0.5), 2 * probability, &y);
|
|
if(degrees_of_freedom * y > tools::max_value<RealType>() * x)
|
|
t = tools::overflow_error<RealType>(function);
|
|
else
|
|
t = sqrt(degrees_of_freedom * y / x);
|
|
//
|
|
// Figure out sign based on the size of p:
|
|
//
|
|
if(p < 0.5)
|
|
t = -t;
|
|
|
|
return t;
|
|
#endif
|
|
//
|
|
// Depending on how many digits RealType has, this may forward
|
|
// to the incomplete beta inverse as above. Otherwise uses a
|
|
// faster method that is accurate to ~15 digits everywhere
|
|
// and a couple of epsilon at double precision and in the central
|
|
// region where most use cases will occur...
|
|
//
|
|
return boost::math::detail::fast_students_t_quantile(df, probability, Policy());
|
|
} // quantile
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType cdf(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
|
|
{
|
|
return cdf(c.dist, -c.param);
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType quantile(const complemented2_type<students_t_distribution<RealType, Policy>, RealType>& c)
|
|
{
|
|
return -quantile(c.dist, c.param);
|
|
}
|
|
|
|
//
|
|
// Parameter estimation follows:
|
|
//
|
|
namespace detail{
|
|
//
|
|
// Functors for finding degrees of freedom:
|
|
//
|
|
template <class RealType, class Policy>
|
|
struct sample_size_func
|
|
{
|
|
sample_size_func(RealType a, RealType b, RealType s, RealType d)
|
|
: alpha(a), beta(b), ratio(s*s/(d*d)) {}
|
|
|
|
RealType operator()(const RealType& df)
|
|
{
|
|
if(df <= tools::min_value<RealType>())
|
|
{ //
|
|
return 1;
|
|
}
|
|
students_t_distribution<RealType, Policy> t(df);
|
|
RealType qa = quantile(complement(t, alpha));
|
|
RealType qb = quantile(complement(t, beta));
|
|
qa += qb;
|
|
qa *= qa;
|
|
qa *= ratio;
|
|
qa -= (df + 1);
|
|
return qa;
|
|
}
|
|
RealType alpha, beta, ratio;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <class RealType, class Policy>
|
|
RealType students_t_distribution<RealType, Policy>::find_degrees_of_freedom(
|
|
RealType difference_from_mean,
|
|
RealType alpha,
|
|
RealType beta,
|
|
RealType sd,
|
|
RealType hint)
|
|
{
|
|
static const char* function = "boost::math::students_t_distribution<%1%>::find_degrees_of_freedom";
|
|
//
|
|
// Check for domain errors:
|
|
//
|
|
RealType error_result;
|
|
if(false == detail::check_probability(
|
|
function, alpha, &error_result, Policy())
|
|
&& detail::check_probability(function, beta, &error_result, Policy()))
|
|
return error_result;
|
|
|
|
if(hint <= 0)
|
|
hint = 1;
|
|
|
|
detail::sample_size_func<RealType, Policy> f(alpha, beta, sd, difference_from_mean);
|
|
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
|
|
boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
|
|
std::pair<RealType, RealType> r = tools::bracket_and_solve_root(f, hint, RealType(2), false, tol, max_iter, Policy());
|
|
RealType result = r.first + (r.second - r.first) / 2;
|
|
if(max_iter >= policies::get_max_root_iterations<Policy>())
|
|
{
|
|
return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
|
|
" either there is no answer to how many degrees of freedom are required"
|
|
" or the answer is infinite. Current best guess is %1%", result, Policy());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType mode(const students_t_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// Assume no checks on degrees of freedom are useful (unlike mean).
|
|
return 0; // Always zero by definition.
|
|
}
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType median(const students_t_distribution<RealType, Policy>& /*dist*/)
|
|
{
|
|
// Assume no checks on degrees of freedom are useful (unlike mean).
|
|
return 0; // Always zero by definition.
|
|
}
|
|
|
|
// See section 5.1 on moments at http://en.wikipedia.org/wiki/Student%27s_t-distribution
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType mean(const students_t_distribution<RealType, Policy>& dist)
|
|
{ // Revised for https://svn.boost.org/trac/boost/ticket/7177
|
|
RealType df = dist.degrees_of_freedom();
|
|
if(((boost::math::isnan)(df)) || (df <= 1) )
|
|
{ // mean is undefined for moment <= 1!
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::mean(students_t_distribution<%1%> const&, %1%)",
|
|
"Mean is undefined for degrees of freedom < 1 but got %1%.", df, Policy());
|
|
return std::numeric_limits<RealType>::quiet_NaN();
|
|
}
|
|
return 0;
|
|
} // mean
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType variance(const students_t_distribution<RealType, Policy>& dist)
|
|
{ // http://en.wikipedia.org/wiki/Student%27s_t-distribution
|
|
// Revised for https://svn.boost.org/trac/boost/ticket/7177
|
|
RealType df = dist.degrees_of_freedom();
|
|
if ((boost::math::isnan)(df) || (df <= 2))
|
|
{ // NaN or undefined for <= 2.
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::variance(students_t_distribution<%1%> const&, %1%)",
|
|
"variance is undefined for degrees of freedom <= 2, but got %1%.",
|
|
df, Policy());
|
|
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
|
|
}
|
|
if ((boost::math::isinf)(df))
|
|
{ // +infinity.
|
|
return 1;
|
|
}
|
|
RealType limit = policies::get_epsilon<RealType, Policy>();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
limit = static_cast<RealType>(1) / limit; // 1/eps
|
|
// for 64-bit double 1/eps = 4503599627370496
|
|
if (df > limit)
|
|
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return df / (df - 2);
|
|
}
|
|
} // variance
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType skewness(const students_t_distribution<RealType, Policy>& dist)
|
|
{
|
|
RealType df = dist.degrees_of_freedom();
|
|
if( ((boost::math::isnan)(df)) || (dist.degrees_of_freedom() <= 3))
|
|
{ // Undefined for moment k = 3.
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::skewness(students_t_distribution<%1%> const&, %1%)",
|
|
"Skewness is undefined for degrees of freedom <= 3, but got %1%.",
|
|
dist.degrees_of_freedom(), Policy());
|
|
return std::numeric_limits<RealType>::quiet_NaN();
|
|
}
|
|
return 0; // For all valid df, including infinity.
|
|
} // skewness
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType kurtosis(const students_t_distribution<RealType, Policy>& dist)
|
|
{
|
|
RealType df = dist.degrees_of_freedom();
|
|
if(((boost::math::isnan)(df)) || (df <= 4))
|
|
{ // Undefined or infinity for moment k = 4.
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::kurtosis(students_t_distribution<%1%> const&, %1%)",
|
|
"Kurtosis is undefined for degrees of freedom <= 4, but got %1%.",
|
|
df, Policy());
|
|
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
|
|
}
|
|
if ((boost::math::isinf)(df))
|
|
{ // +infinity.
|
|
return 3;
|
|
}
|
|
RealType limit = policies::get_epsilon<RealType, Policy>();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
limit = static_cast<RealType>(1) / limit; // 1/eps
|
|
// for 64-bit double 1/eps = 4503599627370496
|
|
if (df > limit)
|
|
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
|
return 3;
|
|
}
|
|
else
|
|
{
|
|
//return 3 * (df - 2) / (df - 4); re-arranged to
|
|
return 6 / (df - 4) + 3;
|
|
}
|
|
} // kurtosis
|
|
|
|
template <class RealType, class Policy>
|
|
inline RealType kurtosis_excess(const students_t_distribution<RealType, Policy>& dist)
|
|
{
|
|
// see http://mathworld.wolfram.com/Kurtosis.html
|
|
|
|
RealType df = dist.degrees_of_freedom();
|
|
if(((boost::math::isnan)(df)) || (df <= 4))
|
|
{ // Undefined or infinity for moment k = 4.
|
|
return policies::raise_domain_error<RealType>(
|
|
"boost::math::kurtosis_excess(students_t_distribution<%1%> const&, %1%)",
|
|
"Kurtosis_excess is undefined for degrees of freedom <= 4, but got %1%.",
|
|
df, Policy());
|
|
return std::numeric_limits<RealType>::quiet_NaN(); // Undefined.
|
|
}
|
|
if ((boost::math::isinf)(df))
|
|
{ // +infinity.
|
|
return 0;
|
|
}
|
|
RealType limit = policies::get_epsilon<RealType, Policy>();
|
|
// Use policies so that if policy requests lower precision,
|
|
// then get the normal distribution approximation earlier.
|
|
limit = static_cast<RealType>(1) / limit; // 1/eps
|
|
// for 64-bit double 1/eps = 4503599627370496
|
|
if (df > limit)
|
|
{ // Special case for really big degrees_of_freedom > 1 / eps.
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 6 / (df - 4);
|
|
}
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace boost
|
|
|
|
#ifdef BOOST_MSVC
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
// This include must be at the end, *after* the accessors
|
|
// for this distribution have been defined, in order to
|
|
// keep compilers that support two-phase lookup happy.
|
|
#include <boost/math/distributions/detail/derived_accessors.hpp>
|
|
|
|
#endif // BOOST_STATS_STUDENTS_T_HPP
|