113 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_BESSEL_YN_HPP
 | |
| #define BOOST_MATH_BESSEL_YN_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/detail/bessel_y0.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_y1.hpp>
 | |
| #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| 
 | |
| // Bessel function of the second kind of integer order
 | |
| // Y_n(z) is the dominant solution, forward recurrence always OK (though unstable)
 | |
| 
 | |
| namespace boost { namespace math { namespace detail{
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T bessel_yn(int n, T x, const Policy& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     T value, factor, current, prev;
 | |
| 
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     static const char* function = "boost::math::bessel_yn<%1%>(%1%,%1%)";
 | |
| 
 | |
|     if ((x == 0) && (n == 0))
 | |
|     {
 | |
|        return -policies::raise_overflow_error<T>(function, 0, pol);
 | |
|     }
 | |
|     if (x <= 0)
 | |
|     {
 | |
|        return policies::raise_domain_error<T>(function,
 | |
|             "Got x = %1%, but x must be > 0, complex result not supported.", x, pol);
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Reflection comes first:
 | |
|     //
 | |
|     if (n < 0)
 | |
|     {
 | |
|         factor = static_cast<T>((n & 0x1) ? -1 : 1);  // Y_{-n}(z) = (-1)^n Y_n(z)
 | |
|         n = -n;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         factor = 1;
 | |
|     }
 | |
|     if(x < policies::get_epsilon<T, Policy>())
 | |
|     {
 | |
|        T scale = 1;
 | |
|        value = bessel_yn_small_z(n, x, &scale, pol);
 | |
|        if(tools::max_value<T>() * fabs(scale) < fabs(value))
 | |
|           return boost::math::sign(scale) * boost::math::sign(value) * policies::raise_overflow_error<T>(function, 0, pol);
 | |
|        value /= scale;
 | |
|     }
 | |
|     else if(asymptotic_bessel_large_x_limit(n, x))
 | |
|     {
 | |
|        value = factor * asymptotic_bessel_y_large_x_2(static_cast<T>(abs(n)), x);
 | |
|     }
 | |
|     else if (n == 0)
 | |
|     {
 | |
|         value = bessel_y0(x, pol);
 | |
|     }
 | |
|     else if (n == 1)
 | |
|     {
 | |
|         value = factor * bessel_y1(x, pol);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|        prev = bessel_y0(x, pol);
 | |
|        current = bessel_y1(x, pol);
 | |
|        int k = 1;
 | |
|        BOOST_ASSERT(k < n);
 | |
|        policies::check_series_iterations<T>("boost::math::bessel_y_n<%1%>(%1%,%1%)", n, pol);
 | |
|        T mult = 2 * k / x;
 | |
|        value = mult * current - prev;
 | |
|        prev = current;
 | |
|        current = value;
 | |
|        ++k;
 | |
|        if((mult > 1) && (fabs(current) > 1))
 | |
|        {
 | |
|           prev /= current;
 | |
|           factor /= current;
 | |
|           value /= current;
 | |
|           current = 1;
 | |
|        }
 | |
|        while(k < n)
 | |
|        {
 | |
|            mult = 2 * k / x;
 | |
|            value = mult * current - prev;
 | |
|            prev = current;
 | |
|            current = value;
 | |
|            ++k;
 | |
|        }
 | |
|        if(fabs(tools::max_value<T>() * factor) < fabs(value))
 | |
|           return sign(value) * sign(factor) * policies::raise_overflow_error<T>(function, 0, pol);
 | |
|        value /= factor;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_BESSEL_YN_HPP
 | |
| 
 | 
