1366 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1366 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* MOD2SPARSE.C - Procedures for handling sparse mod2 matrices. */
 | |
| 
 | |
| /* Copyright (c) 1995-2012 by Radford M. Neal.
 | |
|  *
 | |
|  * Permission is granted for anyone to copy, use, modify, and distribute
 | |
|  * these programs and accompanying documents for any purpose, provided
 | |
|  * this copyright notice is retained and prominently displayed, and note
 | |
|  * is made of any changes made to these programs.  These programs and
 | |
|  * documents are distributed without any warranty, express or implied.
 | |
|  * As the programs were written for research purposes only, they have not
 | |
|  * been tested to the degree that would be advisable in any important
 | |
|  * application.  All use of these programs is entirely at the user's own
 | |
|  * risk.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* NOTE:  See mod2sparse.html for documentation on these procedures. */
 | |
| 
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "alloc.h"
 | |
| #include "intio.h"
 | |
| #include "mod2sparse.h"
 | |
| 
 | |
| 
 | |
| /* ALLOCATE AN ENTRY WITHIN A MATRIX.  This local procedure is used to
 | |
|    allocate a new entry, representing a non-zero element, within a given
 | |
|    matrix.  Entries in this matrix that were previously allocated and
 | |
|    then freed are re-used.  If there are no such entries, a new block
 | |
|    of entries is allocated. */
 | |
| 
 | |
| static mod2entry *alloc_entry
 | |
| ( mod2sparse *m
 | |
| )
 | |
| { 
 | |
|   mod2block *b;
 | |
|   mod2entry *e;
 | |
|   int k;
 | |
| 
 | |
|   if (m->next_free==0)
 | |
|   { 
 | |
|     b = chk_alloc (1, sizeof *b);
 | |
| 
 | |
|     b->next = m->blocks;
 | |
|     m->blocks = b;
 | |
| 
 | |
|     for (k = 0; k<Mod2sparse_block; k++)
 | |
|     { b->entry[k].left = m->next_free;
 | |
|       m->next_free = &b->entry[k];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   e = m->next_free;
 | |
|   m->next_free = e->left;
 | |
| 
 | |
|   e->pr = 0;
 | |
|   e->lr = 0;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ALLOCATE SPACE FOR A SPARSE MOD2 MATRIX.  */
 | |
| 
 | |
| mod2sparse *mod2sparse_allocate
 | |
| ( int n_rows, 		/* Number of rows in matrix */
 | |
|   int n_cols		/* Number of columns in matrix */
 | |
| )
 | |
| {
 | |
|   mod2sparse *m;
 | |
|   mod2entry *e;
 | |
|   int i, j;
 | |
| 
 | |
|   if (n_rows<=0 || n_cols<=0)
 | |
|   { fprintf(stderr,"mod2sparse_allocate: Invalid number of rows or columns\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   m = chk_alloc (1, sizeof *m);
 | |
| 
 | |
|   m->n_rows = n_rows;
 | |
|   m->n_cols = n_cols;
 | |
| 
 | |
|   m->rows = chk_alloc (n_rows, sizeof *m->rows);
 | |
|   m->cols = chk_alloc (n_cols, sizeof *m->cols);
 | |
| 
 | |
|   m->blocks = 0;
 | |
|   m->next_free = 0;
 | |
| 
 | |
|   for (i = 0; i<n_rows; i++)
 | |
|   { e = &m->rows[i];
 | |
|     e->left = e->right = e->up = e->down = e;
 | |
|     e->row = e->col = -1;
 | |
|   }
 | |
| 
 | |
|   for (j = 0; j<n_cols; j++)
 | |
|   { e = &m->cols[j];
 | |
|     e->left = e->right = e->up = e->down = e;
 | |
|     e->row = e->col = -1;
 | |
|   }
 | |
| 
 | |
|   return m;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* FREE SPACE OCCUPIED BY A SPARSE MOD2 MATRIX. */
 | |
| 
 | |
| void mod2sparse_free
 | |
| ( mod2sparse *m		/* Matrix to free */
 | |
| )
 | |
| { 
 | |
|   mod2block *b;
 | |
| 
 | |
|   if (m)
 | |
|   { free(m->rows);
 | |
|     free(m->cols);
 | |
| 
 | |
|     while (m->blocks!=0)
 | |
|     { b = m->blocks;
 | |
|       m->blocks = b->next;
 | |
|       free(b);
 | |
|     }
 | |
| 
 | |
|     free (m);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* CLEAR A SPARSE MATRIX TO ALL ZEROS. */
 | |
| 
 | |
| void mod2sparse_clear
 | |
| ( mod2sparse *r
 | |
| )
 | |
| {
 | |
|   mod2block *b;
 | |
|   mod2entry *e;
 | |
|   int i, j;
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(r); i++)
 | |
|   { e = &r->rows[i];
 | |
|     e->left = e->right = e->up = e->down = e;
 | |
|   }
 | |
| 
 | |
|   for (j = 0; j<mod2sparse_cols(r); j++)
 | |
|   { e = &r->cols[j];
 | |
|     e->left = e->right = e->up = e->down = e;
 | |
|   }
 | |
| 
 | |
|   while (r->blocks!=0)
 | |
|   { b = r->blocks;
 | |
|     r->blocks = b->next;
 | |
|     free(b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COPY A SPARSE MATRIX. */
 | |
| 
 | |
| void mod2sparse_copy
 | |
| ( mod2sparse *m,	/* Matrix to copy */
 | |
|   mod2sparse *r		/* Place to store copy of matrix */
 | |
| )
 | |
| {
 | |
|   mod2entry *e, *f;
 | |
|   int i;
 | |
| 
 | |
|   if (mod2sparse_rows(m)>mod2sparse_rows(r) 
 | |
|    || mod2sparse_cols(m)>mod2sparse_cols(r))
 | |
|   { fprintf(stderr,"mod2sparse_copy: Destination matrix is too small\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(m); i++)
 | |
|   {
 | |
|     e = mod2sparse_first_in_row(m,i); 
 | |
| 
 | |
|     while (!mod2sparse_at_end(e))
 | |
|     { f = mod2sparse_insert(r,e->row,e->col);
 | |
|       f->lr = e->lr;
 | |
|       f->pr = e->pr;
 | |
|       e = mod2sparse_next_in_row(e);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COPY ROWS OF A SPARSE MOD2 MATRIX. */
 | |
| 
 | |
| void mod2sparse_copyrows
 | |
| ( mod2sparse *m,	/* Matrix to copy */
 | |
|   mod2sparse *r,	/* Place to store copy of matrix */
 | |
|   int *rows		/* Indexes of rows to copy, from 0 */
 | |
| )
 | |
| { 
 | |
|   mod2entry *e;
 | |
|   int i;
 | |
| 
 | |
|   if (mod2sparse_cols(m)>mod2sparse_cols(r))
 | |
|   { fprintf(stderr,
 | |
|      "mod2sparse_copyrows: Destination matrix has fewer columns than source\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(r); i++)
 | |
|   { if (rows[i]<0 || rows[i]>=mod2sparse_rows(m))
 | |
|     { fprintf(stderr,"mod2sparse_copyrows: Row index out of range\n");
 | |
|       exit(1);
 | |
|     }
 | |
|     e = mod2sparse_first_in_row(m,rows[i]);
 | |
|     while (!mod2sparse_at_end(e))
 | |
|     { mod2sparse_insert(r,i,e->col);
 | |
|       e = mod2sparse_next_in_row(e);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COPY COLUMNS OF A SPARSE MOD2 MATRIX. */
 | |
| 
 | |
| void mod2sparse_copycols
 | |
| ( mod2sparse *m,	/* Matrix to copy */
 | |
|   mod2sparse *r,	/* Place to store copy of matrix */
 | |
|   int *cols		/* Indexes of columns to copy, from 0 */
 | |
| )
 | |
| { 
 | |
|   mod2entry *e;
 | |
|   int j;
 | |
| 
 | |
|   if (mod2sparse_rows(m)>mod2sparse_rows(r))
 | |
|   { fprintf(stderr,
 | |
|       "mod2sparse_copycols: Destination matrix has fewer rows than source\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (j = 0; j<mod2sparse_cols(r); j++)
 | |
|   { if (cols[j]<0 || cols[j]>=mod2sparse_cols(m))
 | |
|     { fprintf(stderr,"mod2sparse_copycols: Column index out of range\n");
 | |
|       exit(1);
 | |
|     }
 | |
|     e = mod2sparse_first_in_col(m,cols[j]);
 | |
|     while (!mod2sparse_at_end(e))
 | |
|     { mod2sparse_insert(r,e->row,j);
 | |
|       e = mod2sparse_next_in_col(e);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* PRINT A SPARSE MOD2 MATRIX IN HUMAN-READABLE FORM. */
 | |
| 
 | |
| void mod2sparse_print
 | |
| ( FILE *f,
 | |
|   mod2sparse *m
 | |
| )
 | |
| { 
 | |
|   int rdigits, cdigits;
 | |
|   mod2entry *e;
 | |
|   int i;
 | |
| 
 | |
|   rdigits = mod2sparse_rows(m)<=10 ? 1 
 | |
|           : mod2sparse_rows(m)<=100 ? 2
 | |
|           : mod2sparse_rows(m)<=1000 ? 3
 | |
|           : mod2sparse_rows(m)<=10000 ? 4
 | |
|           : mod2sparse_rows(m)<=100000 ? 5
 | |
|           : 6;
 | |
| 
 | |
|   cdigits = mod2sparse_cols(m)<=10 ? 1 
 | |
|           : mod2sparse_cols(m)<=100 ? 2
 | |
|           : mod2sparse_cols(m)<=1000 ? 3
 | |
|           : mod2sparse_cols(m)<=10000 ? 4
 | |
|           : mod2sparse_cols(m)<=100000 ? 5
 | |
|           : 6;
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(m); i++)
 | |
|   { 
 | |
|     fprintf(f,"%*d:",rdigits,i);
 | |
| 
 | |
|     e = mod2sparse_first_in_row(m,i);
 | |
|     while (!mod2sparse_at_end(e))
 | |
|     { fprintf(f," %*d",cdigits,mod2sparse_col(e));
 | |
|       e = mod2sparse_next_in_row(e);
 | |
|     }
 | |
| 
 | |
|     fprintf(f,"\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* WRITE A SPARSE MOD2 MATRIX TO A FILE IN MACHINE-READABLE FORM. */
 | |
| 
 | |
| int mod2sparse_write
 | |
| ( FILE *f,
 | |
|   mod2sparse *m
 | |
| )
 | |
| {
 | |
|   mod2entry *e;
 | |
|   int i;
 | |
| 
 | |
|   intio_write(f,m->n_rows);
 | |
|   if (ferror(f)) return 0;
 | |
| 
 | |
|   intio_write(f,m->n_cols);
 | |
|   if (ferror(f)) return 0;
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(m); i++)
 | |
|   { 
 | |
|     e = mod2sparse_first_in_row(m,i);
 | |
| 
 | |
|     if (!mod2sparse_at_end(e))
 | |
|     {
 | |
|       intio_write (f, -(i+1));
 | |
|       if (ferror(f)) return 0;
 | |
| 
 | |
|       while (!mod2sparse_at_end(e))
 | |
|       { 
 | |
|         intio_write (f, mod2sparse_col(e)+1);
 | |
|         if (ferror(f)) return 0;
 | |
| 
 | |
|         e = mod2sparse_next_in_row(e);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   intio_write(f,0);
 | |
|   if (ferror(f)) return 0;
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* READ A SPARSE MOD2 MATRIX STORED IN MACHINE-READABLE FORM FROM A FILE. */
 | |
| 
 | |
| mod2sparse *mod2sparse_read
 | |
| ( FILE *f
 | |
| )
 | |
| {
 | |
|   int n_rows, n_cols;
 | |
|   mod2sparse *m;
 | |
|   int v, row, col;
 | |
| 
 | |
|   n_rows = intio_read(f);
 | |
|   if (feof(f) || ferror(f) || n_rows<=0) return 0;
 | |
| 
 | |
|   n_cols = intio_read(f);
 | |
|   if (feof(f) || ferror(f) || n_cols<=0) return 0;
 | |
| 
 | |
|   m = mod2sparse_allocate(n_rows,n_cols);
 | |
| 
 | |
|   row = -1;
 | |
| 
 | |
|   for (;;)
 | |
|   {
 | |
|     v = intio_read(f);
 | |
|     if (feof(f) || ferror(f)) break;
 | |
| 
 | |
|     if (v==0)
 | |
|     { return m;
 | |
|     }
 | |
|     else if (v<0) 
 | |
|     { row = -v-1;
 | |
|       if (row>=n_rows) break;
 | |
|     }
 | |
|     else 
 | |
|     { col = v-1;
 | |
|       if (col>=n_cols) break;
 | |
|       if (row==-1) break;
 | |
|       mod2sparse_insert(m,row,col);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Error if we get here. */
 | |
| 
 | |
|   mod2sparse_free(m);
 | |
|   return 0;   
 | |
| }
 | |
| 
 | |
| 
 | |
| /* LOOK FOR AN ENTRY WITH GIVEN ROW AND COLUMN. */
 | |
| 
 | |
| mod2entry *mod2sparse_find
 | |
| ( mod2sparse *m,
 | |
|   int row,
 | |
|   int col
 | |
| )
 | |
| { 
 | |
|   mod2entry *re, *ce;
 | |
| 
 | |
|   if (row<0 || row>=mod2sparse_rows(m) || col<0 || col>=mod2sparse_cols(m))
 | |
|   { fprintf(stderr,"mod2sparse_find: row or column index out of bounds\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   /* Check last entries in row and column. */
 | |
| 
 | |
|   re = mod2sparse_last_in_row(m,row);
 | |
|   if (mod2sparse_at_end(re) || mod2sparse_col(re)<col) 
 | |
|   { return 0;
 | |
|   }
 | |
|   if (mod2sparse_col(re)==col) 
 | |
|   { return re;
 | |
|   }
 | |
| 
 | |
|   ce = mod2sparse_last_in_col(m,col);
 | |
|   if (mod2sparse_at_end(ce) || mod2sparse_row(ce)<row)
 | |
|   { return 0;
 | |
|   }
 | |
|   if (mod2sparse_row(ce)==row)
 | |
|   { return ce;
 | |
|   }
 | |
| 
 | |
|   /* Search row and column in parallel, from the front. */
 | |
| 
 | |
|   re = mod2sparse_first_in_row(m,row);
 | |
|   ce = mod2sparse_first_in_col(m,col);
 | |
| 
 | |
|   for (;;)
 | |
|   { 
 | |
|     if (mod2sparse_at_end(re) || mod2sparse_col(re)>col)
 | |
|     { return 0;
 | |
|     } 
 | |
|     if (mod2sparse_col(re)==col) 
 | |
|     { return re;
 | |
|     }
 | |
| 
 | |
|     if (mod2sparse_at_end(ce) || mod2sparse_row(ce)>row)
 | |
|     { return 0;
 | |
|     } 
 | |
|     if (mod2sparse_row(ce)==row)
 | |
|     { return ce;
 | |
|     }
 | |
| 
 | |
|     re = mod2sparse_next_in_row(re);
 | |
|     ce = mod2sparse_next_in_col(ce);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* INSERT AN ENTRY WITH GIVEN ROW AND COLUMN. */
 | |
| 
 | |
| mod2entry *mod2sparse_insert
 | |
| ( mod2sparse *m,
 | |
|   int row,
 | |
|   int col
 | |
| )
 | |
| {
 | |
|   mod2entry *re, *ce, *ne;
 | |
| 
 | |
|   if (row<0 || row>=mod2sparse_rows(m) || col<0 || col>=mod2sparse_cols(m))
 | |
|   { fprintf(stderr,"mod2sparse_insert: row or column index out of bounds\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   /* Find old entry and return it, or allocate new entry and insert into row. */
 | |
| 
 | |
|   re = mod2sparse_last_in_row(m,row);
 | |
| 
 | |
|   if (!mod2sparse_at_end(re) && mod2sparse_col(re)==col) 
 | |
|   { return re;
 | |
|   }
 | |
| 
 | |
|   if (mod2sparse_at_end(re) || mod2sparse_col(re)<col) 
 | |
|   { re = re->right;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     re = mod2sparse_first_in_row(m,row);
 | |
| 
 | |
|     for (;;)
 | |
|     { 
 | |
|       if (!mod2sparse_at_end(re) && mod2sparse_col(re)==col) 
 | |
|       { return re;
 | |
|       }
 | |
| 
 | |
|       if (mod2sparse_at_end(re) || mod2sparse_col(re)>col)
 | |
|       { break;
 | |
|       } 
 | |
| 
 | |
|       re = mod2sparse_next_in_row(re);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ne = alloc_entry(m);
 | |
| 
 | |
|   ne->row = row;
 | |
|   ne->col = col;
 | |
| 
 | |
|   ne->left = re->left;
 | |
|   ne->right = re;
 | |
|   ne->left->right = ne;
 | |
|   ne->right->left = ne;
 | |
| 
 | |
|   /* Insert new entry into column.  If we find an existing entry here,
 | |
|      the matrix must be garbled, since we didn't find it in the row. */
 | |
| 
 | |
|   ce = mod2sparse_last_in_col(m,col);
 | |
| 
 | |
|   if (!mod2sparse_at_end(ce) && mod2sparse_row(ce)==row) 
 | |
|   { fprintf(stderr,"mod2sparse_insert: Garbled matrix\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (mod2sparse_at_end(ce) || mod2sparse_row(ce)<row) 
 | |
|   { ce = ce->down;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     ce = mod2sparse_first_in_col(m,col);
 | |
| 
 | |
|     for (;;)
 | |
|     { 
 | |
|       if (!mod2sparse_at_end(ce) && mod2sparse_row(ce)==row) 
 | |
|       { fprintf(stderr,"mod2sparse_insert: Garbled matrix\n");
 | |
|         exit(1);
 | |
|       }
 | |
| 
 | |
|       if (mod2sparse_at_end(ce) || mod2sparse_row(ce)>row)
 | |
|       { break;
 | |
|       } 
 | |
| 
 | |
|       ce = mod2sparse_next_in_col(ce);
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   ne->up = ce->up;
 | |
|   ne->down = ce;
 | |
|   ne->up->down = ne;
 | |
|   ne->down->up = ne;
 | |
| 
 | |
|   /* Return the new entry. */
 | |
| 
 | |
|   return ne;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* DELETE AN ENTRY FROM A SPARSE MATRIX. */
 | |
| 
 | |
| void mod2sparse_delete
 | |
| ( mod2sparse *m,
 | |
|   mod2entry *e
 | |
| )
 | |
| { 
 | |
|   if (e==0)
 | |
|   { fprintf(stderr,"mod2sparse_delete: Trying to delete a null entry\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (e->row<0 || e->col<0)
 | |
|   { fprintf(stderr,"mod2sparse_delete: Trying to delete a header entry\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   e->left->right = e->right;
 | |
|   e->right->left = e->left;
 | |
| 
 | |
|   e->up->down = e->down;
 | |
|   e->down->up = e->up;
 | |
|  
 | |
|   e->left = m->next_free;
 | |
|   m->next_free = e;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* TEST WHETHER TWO SPARSE MATRICES ARE EQUAL. */
 | |
| 
 | |
| int mod2sparse_equal
 | |
| ( mod2sparse *m1,
 | |
|   mod2sparse *m2
 | |
| )
 | |
| {
 | |
|   mod2entry *e1, *e2;
 | |
|   int i;
 | |
| 
 | |
|   if (mod2sparse_rows(m1)!=mod2sparse_rows(m2) 
 | |
|    || mod2sparse_cols(m1)!=mod2sparse_cols(m2))
 | |
|   { fprintf(stderr,"mod2sparse_equal: Matrices have different dimensions\n");
 | |
|     exit(1);
 | |
|   }
 | |
|   
 | |
|   for (i = 0; i<mod2sparse_rows(m1); i++)
 | |
|   { 
 | |
|     e1 = mod2sparse_first_in_row(m1,i);
 | |
|     e2 = mod2sparse_first_in_row(m2,i);
 | |
| 
 | |
|     while (!mod2sparse_at_end(e1) && !mod2sparse_at_end(e2))
 | |
|     {  
 | |
|       if (mod2sparse_col(e1)!=mod2sparse_col(e2))
 | |
|       { return 0;
 | |
|       }
 | |
| 
 | |
|       e1 = mod2sparse_next_in_row(e1);
 | |
|       e2 = mod2sparse_next_in_row(e2);
 | |
|     }
 | |
| 
 | |
|     if (!mod2sparse_at_end(e1) || !mod2sparse_at_end(e2)) 
 | |
|     { return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COMPUTE THE TRANSPOSE OF A SPARSE MOD2 MATRIX. */
 | |
| 
 | |
| void mod2sparse_transpose
 | |
| ( mod2sparse *m,	/* Matrix to compute transpose of (left unchanged) */
 | |
|   mod2sparse *r		/* Result of transpose operation */
 | |
| )
 | |
| {
 | |
|   mod2entry *e;
 | |
|   int i;
 | |
| 
 | |
|   if (mod2sparse_rows(m)!=mod2sparse_cols(r) 
 | |
|    || mod2sparse_cols(m)!=mod2sparse_rows(r))
 | |
|   { fprintf(stderr,
 | |
|      "mod2sparse_transpose: Matrices have incompatible dimensions\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (r==m)
 | |
|   { fprintf(stderr, 
 | |
|      "mod2sparse_transpose: Result matrix is the same as the operand\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(m); i++)
 | |
|   {
 | |
|     e = mod2sparse_first_in_row(m,i);
 | |
| 
 | |
|     while (!mod2sparse_at_end(e))
 | |
|     { mod2sparse_insert(r,mod2sparse_col(e),i);
 | |
|       e = mod2sparse_next_in_row(e);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ADD TWO SPARSE MOD2 MATRICES. */
 | |
| 
 | |
| void mod2sparse_add
 | |
| ( mod2sparse *m1,	/* Left operand of add */
 | |
|   mod2sparse *m2,	/* Right operand of add */
 | |
|   mod2sparse *r		/* Place to store result of add */
 | |
| )
 | |
| {
 | |
|   mod2entry *e1, *e2;
 | |
|   int i;
 | |
| 
 | |
|   if (mod2sparse_rows(m1)!=mod2sparse_rows(r) 
 | |
|    || mod2sparse_cols(m1)!=mod2sparse_cols(r) 
 | |
|    || mod2sparse_rows(m2)!=mod2sparse_rows(r)
 | |
|    || mod2sparse_cols(m2)!=mod2sparse_cols(r)) 
 | |
|   { fprintf(stderr,"mod2sparse_add: Matrices have different dimensions\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (r==m1 || r==m2)
 | |
|   { fprintf(stderr,
 | |
|      "mod2sparse_add: Result matrix is the same as one of the operands\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(r); i++)
 | |
|   { 
 | |
|     e1 = mod2sparse_first_in_row(m1,i);
 | |
|     e2 = mod2sparse_first_in_row(m2,i);
 | |
| 
 | |
|     while (!mod2sparse_at_end(e1) && !mod2sparse_at_end(e2))
 | |
|     { 
 | |
|       if (mod2sparse_col(e1)==mod2sparse_col(e2))
 | |
|       { e1 = mod2sparse_next_in_row(e1);
 | |
|         e2 = mod2sparse_next_in_row(e2); 
 | |
|       }
 | |
| 
 | |
|       else if (mod2sparse_col(e1)<mod2sparse_col(e2))
 | |
|       { mod2sparse_insert(r,i,mod2sparse_col(e1));
 | |
|         e1 = mod2sparse_next_in_row(e1);
 | |
|       }
 | |
| 
 | |
|       else
 | |
|       { mod2sparse_insert(r,i,mod2sparse_col(e2));
 | |
|         e2 = mod2sparse_next_in_row(e2);       
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (!mod2sparse_at_end(e1))
 | |
|     { mod2sparse_insert(r,i,mod2sparse_col(e1));
 | |
|       e1 = mod2sparse_next_in_row(e1);
 | |
|     }
 | |
| 
 | |
|     while (!mod2sparse_at_end(e2))
 | |
|     { mod2sparse_insert(r,i,mod2sparse_col(e2));
 | |
|       e2 = mod2sparse_next_in_row(e2);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* MULTIPLY TWO SPARSE MOD2 MATRICES. */
 | |
| 
 | |
| void mod2sparse_multiply 
 | |
| ( mod2sparse *m1, 	/* Left operand of multiply */
 | |
|   mod2sparse *m2,	/* Right operand of multiply */
 | |
|   mod2sparse *r		/* Place to store result of multiply */
 | |
| )
 | |
| {
 | |
|   mod2entry *e1, *e2;
 | |
|   int i, j, b;
 | |
| 
 | |
|   if (mod2sparse_cols(m1)!=mod2sparse_rows(m2) 
 | |
|    || mod2sparse_rows(m1)!=mod2sparse_rows(r) 
 | |
|    || mod2sparse_cols(m2)!=mod2sparse_cols(r))
 | |
|   { fprintf (stderr,
 | |
|       "mod2sparse_multiply: Matrices have incompatible dimensions\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (r==m1 || r==m2)
 | |
|   { fprintf(stderr,
 | |
|      "mod2sparse_multiply: Result matrix is the same as one of the operands\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(r);
 | |
| 
 | |
|   for (i = 0; i<mod2sparse_rows(m1); i++)
 | |
|   { 
 | |
|     if (mod2sparse_at_end(mod2sparse_first_in_row(m1,i))) 
 | |
|     { continue;
 | |
|     }
 | |
| 
 | |
|     for (j = 0; j<mod2sparse_cols(m2); j++)
 | |
|     { 
 | |
|       b = 0;
 | |
| 
 | |
|       e1 = mod2sparse_first_in_row(m1,i);
 | |
|       e2 = mod2sparse_first_in_col(m2,j);
 | |
| 
 | |
|       while (!mod2sparse_at_end(e1) && !mod2sparse_at_end(e2))
 | |
|       { 
 | |
|         if (mod2sparse_col(e1)==mod2sparse_row(e2))
 | |
|         { b ^= 1;
 | |
|           e1 = mod2sparse_next_in_row(e1);
 | |
|           e2 = mod2sparse_next_in_col(e2); 
 | |
|         }
 | |
| 
 | |
|         else if (mod2sparse_col(e1)<mod2sparse_row(e2))
 | |
|         { e1 = mod2sparse_next_in_row(e1);
 | |
|         }
 | |
| 
 | |
|         else
 | |
|         { e2 = mod2sparse_next_in_col(e2);       
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (b)
 | |
|       { mod2sparse_insert(r,i,j);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* MULTIPLY VECTOR BY SPARSE MATRIX. */
 | |
| 
 | |
| void mod2sparse_mulvec
 | |
| ( mod2sparse *m,	/* The sparse matrix, with M rows and N columns */
 | |
|   char *u,		/* The input vector, N long */
 | |
|   char *v		/* Place to store the result, M long */
 | |
| )
 | |
| {
 | |
|   mod2entry *e;
 | |
|   int M, N;
 | |
|   int i, j;
 | |
| 
 | |
|   M = mod2sparse_rows(m);
 | |
|   N = mod2sparse_cols(m);
 | |
| 
 | |
|   for (i = 0; i<M; i++) v[i] = 0;
 | |
| 
 | |
|   for (j = 0; j<N; j++)
 | |
|   { if (u[j])
 | |
|     { for (e = mod2sparse_first_in_col(m,j);
 | |
|            !mod2sparse_at_end(e);
 | |
|            e = mod2sparse_next_in_col(e))
 | |
|       { v[mod2sparse_row(e)] ^= 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COUNT ENTRIES IN A ROW. */
 | |
| 
 | |
| int mod2sparse_count_row
 | |
| ( mod2sparse *m,
 | |
|   int row
 | |
| )
 | |
| {
 | |
|   mod2entry *e;
 | |
|   int count;
 | |
| 
 | |
|   if (row<0 || row>=mod2sparse_rows(m))
 | |
|   { fprintf(stderr,"mod2sparse_count_row: row index out of bounds\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   count = 0;
 | |
| 
 | |
|   for (e = mod2sparse_first_in_row(m,row);
 | |
|        !mod2sparse_at_end(e);
 | |
|        e = mod2sparse_next_in_row(e))
 | |
|   { count += 1;
 | |
|   }
 | |
| 
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* COUNT ENTRIES IN A COLUMN. */
 | |
| 
 | |
| int mod2sparse_count_col
 | |
| ( mod2sparse *m,
 | |
|   int col
 | |
| )
 | |
| {
 | |
|   mod2entry *e;
 | |
|   int count;
 | |
| 
 | |
|   if (col<0 || col>=mod2sparse_cols(m))
 | |
|   { fprintf(stderr,"mod2sparse_count_col: column index out of bounds\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   count = 0;
 | |
| 
 | |
|   for (e = mod2sparse_first_in_col(m,col);
 | |
|        !mod2sparse_at_end(e);
 | |
|        e = mod2sparse_next_in_col(e))
 | |
|   { count += 1;
 | |
|   }
 | |
| 
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ADD TO A ROW. */
 | |
| 
 | |
| void mod2sparse_add_row
 | |
| ( mod2sparse *m1,	/* Matrix containing row to add to */
 | |
|   int row1,		/* Index in this matrix of row to add to */
 | |
|   mod2sparse *m2,	/* Matrix containing row to add from */
 | |
|   int row2		/* Index in this matrix of row to add from */
 | |
| )
 | |
| {
 | |
|   mod2entry *f1, *f2, *ft;
 | |
| 
 | |
|   if (mod2sparse_cols(m1)<mod2sparse_cols(m2))
 | |
|   { fprintf (stderr,
 | |
|      "mod2sparse_add_row: row added to is shorter than row added from\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (row1<0 || row1>=mod2sparse_rows(m1) 
 | |
|    || row2<0 || row2>=mod2sparse_rows(m2))
 | |
|   { fprintf (stderr,"mod2sparse_add_row: row index out of range\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   f1 = mod2sparse_first_in_row(m1,row1);
 | |
|   f2 = mod2sparse_first_in_row(m2,row2);
 | |
| 
 | |
|   while (!mod2sparse_at_end(f1) && !mod2sparse_at_end(f2))
 | |
|   { if (mod2sparse_col(f1)>mod2sparse_col(f2))
 | |
|     { mod2sparse_insert(m1,row1,mod2sparse_col(f2));
 | |
|       f2 = mod2sparse_next_in_row(f2);
 | |
|     }
 | |
|     else
 | |
|     { ft = mod2sparse_next_in_row(f1);  
 | |
|       if (mod2sparse_col(f1)==mod2sparse_col(f2))
 | |
|       { mod2sparse_delete(m1,f1);
 | |
|         f2 = mod2sparse_next_in_row(f2);
 | |
|       }
 | |
|       f1 = ft;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (!mod2sparse_at_end(f2))
 | |
|   { mod2sparse_insert(m1,row1,mod2sparse_col(f2));
 | |
|     f2 = mod2sparse_next_in_row(f2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ADD TO A COLUMN. */
 | |
| 
 | |
| void mod2sparse_add_col
 | |
| ( mod2sparse *m1,	/* Matrix containing column to add to */
 | |
|   int col1,		/* Index in this matrix of column to add to */
 | |
|   mod2sparse *m2,	/* Matrix containing column to add from */
 | |
|   int col2		/* Index in this matrix of column to add from */
 | |
| )
 | |
| {
 | |
|   mod2entry *f1, *f2, *ft;
 | |
| 
 | |
|   if (mod2sparse_rows(m1)<mod2sparse_rows(m2))
 | |
|   { fprintf (stderr,
 | |
|      "mod2sparse_add_col: Column added to is shorter than column added from\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (col1<0 || col1>=mod2sparse_cols(m1) 
 | |
|    || col2<0 || col2>=mod2sparse_cols(m2))
 | |
|   { fprintf (stderr,"mod2sparse_add_col: Column index out of range\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   f1 = mod2sparse_first_in_col(m1,col1);
 | |
|   f2 = mod2sparse_first_in_col(m2,col2);
 | |
| 
 | |
|   while (!mod2sparse_at_end(f1) && !mod2sparse_at_end(f2))
 | |
|   { if (mod2sparse_row(f1)>mod2sparse_row(f2))
 | |
|     { mod2sparse_insert(m1,mod2sparse_row(f2),col1);
 | |
|       f2 = mod2sparse_next_in_col(f2);
 | |
|     }
 | |
|     else
 | |
|     { ft = mod2sparse_next_in_col(f1);
 | |
|       if (mod2sparse_row(f1)==mod2sparse_row(f2))
 | |
|       { mod2sparse_delete(m1,f1);
 | |
|         f2 = mod2sparse_next_in_col(f2);
 | |
|       }
 | |
|       f1 = ft;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (!mod2sparse_at_end(f2))
 | |
|   { mod2sparse_insert(m1,mod2sparse_row(f2),col1);
 | |
|     f2 = mod2sparse_next_in_col(f2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* FIND AN LU DECOMPOSITION OF A SPARSE MATRIX. */
 | |
| 
 | |
| int mod2sparse_decomp
 | |
| ( mod2sparse *A,	/* Input matrix, M by N */
 | |
|   int K,		/* Size of sub-matrix to find LU decomposition of */
 | |
|   mod2sparse *L,	/* Matrix in which L is stored, M by K */
 | |
|   mod2sparse *U,	/* Matrix in which U is stored, K by N */
 | |
|   int *rows,		/* Array where row indexes are stored, M long */
 | |
|   int *cols,		/* Array where column indexes are stored, N long */
 | |
|   mod2sparse_strategy strategy, /* Strategy to follow in picking rows/columns */
 | |
|   int abandon_number,	/* Number of columns to abandon at some point */
 | |
|   int abandon_when	/* When to abandon these columns */
 | |
| )
 | |
| {  
 | |
|   int *rinv, *cinv, *acnt, *rcnt;
 | |
|   mod2sparse *B;
 | |
|   int M, N;
 | |
| 
 | |
|   mod2entry *e, *f, *fn, *e2;
 | |
|   int i, j, k, cc, cc2, cc3, cr2, pr;
 | |
|   int found, nnf;
 | |
| 
 | |
|   M = mod2sparse_rows(A);
 | |
|   N = mod2sparse_cols(A);
 | |
| 
 | |
|   if (mod2sparse_cols(L)!=K || mod2sparse_rows(L)!=M
 | |
|    || mod2sparse_cols(U)!=N || mod2sparse_rows(U)!=K)
 | |
|   { fprintf (stderr,
 | |
|       "mod2sparse_decomp: Matrices have incompatible dimensions\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (abandon_number>N-K)
 | |
|   { fprintf(stderr,"Trying to abandon more columns than allowed\n");
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   rinv = chk_alloc (M, sizeof *rinv);
 | |
|   cinv = chk_alloc (N, sizeof *cinv);
 | |
| 
 | |
|   if (abandon_number>0)
 | |
|   { acnt = chk_alloc (M+1, sizeof *acnt);
 | |
|   }
 | |
| 
 | |
|   if (strategy==Mod2sparse_minprod)
 | |
|   { rcnt = chk_alloc (M, sizeof *rcnt);
 | |
|   }
 | |
| 
 | |
|   mod2sparse_clear(L);
 | |
|   mod2sparse_clear(U);
 | |
| 
 | |
|   /* Copy A to B.  B will be modified, then discarded. */
 | |
| 
 | |
|   B = mod2sparse_allocate(M,N);
 | |
|   mod2sparse_copy(A,B);
 | |
| 
 | |
|   /* Count 1s in rows of B, if using minprod strategy. */
 | |
| 
 | |
|   if (strategy==Mod2sparse_minprod)
 | |
|   { for (i = 0; i<M; i++) 
 | |
|     { rcnt[i] = mod2sparse_count_row(B,i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Set up initial row and column choices. */
 | |
| 
 | |
|   for (i = 0; i<M; i++) rows[i] = rinv[i] = i;
 | |
|   for (j = 0; j<N; j++) cols[j] = cinv[j] = j;
 | |
|  
 | |
|   /* Find L and U one column at a time. */
 | |
| 
 | |
|   nnf = 0;
 | |
| 
 | |
|   for (i = 0; i<K; i++)
 | |
|   { 
 | |
|     /* Choose the next row and column of B. */
 | |
| 
 | |
|     switch (strategy)
 | |
|     {
 | |
|       case Mod2sparse_first: 
 | |
|       { 
 | |
|         found = 0;
 | |
| 
 | |
|         for (k = i; k<N; k++)
 | |
|         { e = mod2sparse_first_in_col(B,cols[k]);
 | |
|           while (!mod2sparse_at_end(e))
 | |
|           { if (rinv[mod2sparse_row(e)]>=i)
 | |
|             { found = 1;
 | |
|               goto out_first;
 | |
|             }
 | |
|             e = mod2sparse_next_in_col(e);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       out_first:
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case Mod2sparse_mincol:
 | |
|       { 
 | |
|         found = 0;
 | |
| 
 | |
|         for (j = i; j<N; j++)
 | |
|         { cc2 = mod2sparse_count_col(B,cols[j]);
 | |
|           if (!found || cc2<cc)
 | |
|           { e2 = mod2sparse_first_in_col(B,cols[j]);
 | |
|             while (!mod2sparse_at_end(e2))
 | |
|             { if (rinv[mod2sparse_row(e2)]>=i)
 | |
|               { found = 1;
 | |
|                 cc = cc2;
 | |
|                 e = e2;
 | |
|                 k = j;
 | |
|                 break;
 | |
|               }
 | |
|               e2 = mod2sparse_next_in_col(e2);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case Mod2sparse_minprod:
 | |
|       { 
 | |
|         found = 0;
 | |
| 
 | |
|         for (j = i; j<N; j++)
 | |
|         { cc2 = mod2sparse_count_col(B,cols[j]);
 | |
|           e2 = mod2sparse_first_in_col(B,cols[j]);
 | |
|           while (!mod2sparse_at_end(e2))
 | |
|           { if (rinv[mod2sparse_row(e2)]>=i)
 | |
|             { cr2 = rcnt[mod2sparse_row(e2)];
 | |
|               if (!found || cc2==1 || (cc2-1)*(cr2-1)<pr)
 | |
|               { found = 1;
 | |
|                 pr = cc2==1 ? 0 : (cc2-1)*(cr2-1);
 | |
|                 e = e2;
 | |
|                 k = j;
 | |
|               }
 | |
|             }
 | |
|             e2 = mod2sparse_next_in_col(e2);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       default:
 | |
|       { fprintf(stderr,"mod2sparse_decomp: Unknown stategy\n");
 | |
|         exit(1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!found) 
 | |
|     { nnf += 1;
 | |
|     }
 | |
| 
 | |
|     /* Update 'rows' and 'cols'.  Looks at 'k' and 'e' found above. */
 | |
| 
 | |
|     if (found)
 | |
|     { 
 | |
|       if (cinv[mod2sparse_col(e)]!=k) abort();
 | |
| 
 | |
|       cols[k] = cols[i];
 | |
|       cols[i] = mod2sparse_col(e);
 | |
| 
 | |
|       cinv[cols[k]] = k;
 | |
|       cinv[cols[i]] = i;
 | |
| 
 | |
|       k = rinv[mod2sparse_row(e)];
 | |
| 
 | |
|       if (k<i) abort();
 | |
| 
 | |
|       rows[k] = rows[i];
 | |
|       rows[i] = mod2sparse_row(e);
 | |
| 
 | |
|       rinv[rows[k]] = k;
 | |
|       rinv[rows[i]] = i;
 | |
|     }
 | |
| 
 | |
|     /* Update L, U, and B. */
 | |
| 
 | |
|     f = mod2sparse_first_in_col(B,cols[i]); 
 | |
| 
 | |
|     while (!mod2sparse_at_end(f))
 | |
|     { 
 | |
|       fn = mod2sparse_next_in_col(f);
 | |
|       k = mod2sparse_row(f);
 | |
| 
 | |
|       if (rinv[k]>i)
 | |
|       { mod2sparse_add_row(B,k,B,mod2sparse_row(e));
 | |
|         if (strategy==Mod2sparse_minprod) 
 | |
|         { rcnt[k] = mod2sparse_count_row(B,k);
 | |
|         }
 | |
|         mod2sparse_insert(L,k,i);
 | |
|       }
 | |
|       else if (rinv[k]<i)
 | |
|       { mod2sparse_insert(U,rinv[k],cols[i]);
 | |
|       }
 | |
|       else
 | |
|       { mod2sparse_insert(L,k,i);
 | |
|         mod2sparse_insert(U,i,cols[i]);
 | |
|       }
 | |
| 
 | |
|       f = fn;
 | |
|     }
 | |
| 
 | |
|     /* Get rid of all entries in the current column of B, just to save space. */
 | |
| 
 | |
|     for (;;)
 | |
|     { f = mod2sparse_first_in_col(B,cols[i]);
 | |
|       if (mod2sparse_at_end(f)) break;
 | |
|       mod2sparse_delete(B,f);
 | |
|     }
 | |
| 
 | |
|     /* Abandon columns of B with lots of entries if it's time for that. */
 | |
| 
 | |
|     if (abandon_number>0 && i==abandon_when)
 | |
|     { 
 | |
|       for (k = 0; k<M+1; k++) 
 | |
|       { acnt[k] = 0;
 | |
|       }
 | |
|       for (j = 0; j<N; j++) 
 | |
|       { k = mod2sparse_count_col(B,j);
 | |
|         acnt[k] += 1;
 | |
|       }
 | |
| 
 | |
|       cc = abandon_number;
 | |
|       k = M;
 | |
|       while (acnt[k]<cc)
 | |
|       { cc -= acnt[k];
 | |
|         k -= 1;
 | |
|         if (k<0) abort();
 | |
|       }
 | |
| 
 | |
|       cc2 = 0;
 | |
|       for (j = 0; j<N; j++)
 | |
|       { cc3 = mod2sparse_count_col(B,j);
 | |
|         if (cc3>k || (cc3==k && cc>0))
 | |
|         { if (cc3==k) cc -= 1;
 | |
|           for (;;)
 | |
|           { f = mod2sparse_first_in_col(B,j);
 | |
|             if (mod2sparse_at_end(f)) break;
 | |
|             mod2sparse_delete(B,f);
 | |
|           }
 | |
|           cc2 += 1;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (cc2!=abandon_number) abort();
 | |
| 
 | |
|       if (strategy==Mod2sparse_minprod)
 | |
|       { for (j = 0; j<M; j++) 
 | |
|         { rcnt[j] = mod2sparse_count_row(B,j);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Get rid of all entries in the rows of L past row K, after reordering. */
 | |
| 
 | |
|   for (i = K; i<M; i++)
 | |
|   { for (;;)
 | |
|     { f = mod2sparse_first_in_row(L,rows[i]);
 | |
|       if (mod2sparse_at_end(f)) break;
 | |
|       mod2sparse_delete(L,f);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mod2sparse_free(B);
 | |
|   free(rinv);
 | |
|   free(cinv);
 | |
|   if (strategy==Mod2sparse_minprod) free(rcnt);
 | |
|   if (abandon_number>0) free(acnt);
 | |
| 
 | |
|   return nnf;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* SOLVE A LOWER-TRIANGULAR SYSTEM BY FORWARD SUBSTITUTION. */
 | |
| 
 | |
| int mod2sparse_forward_sub
 | |
| ( mod2sparse *L,	/* Matrix that is lower triangular after reordering */
 | |
|   int *rows,		/* Array of indexes (from 0) of rows for new order */
 | |
|   char *x,		/* Vector on right of equation, also reordered */
 | |
|   char *y		/* Place to store solution */
 | |
| )
 | |
| {
 | |
|   int K, i, j, ii, b, d;
 | |
|   mod2entry *e;
 | |
| 
 | |
|   K = mod2sparse_cols(L);
 | |
| 
 | |
|   /* Make sure that L is lower-triangular, after row re-ordering. */
 | |
| 
 | |
|   for (i = 0; i<K; i++)
 | |
|   { ii = rows ? rows[i] : i;
 | |
|     e = mod2sparse_last_in_row(L,ii);
 | |
|     if (!mod2sparse_at_end(e) && mod2sparse_col(e)>i)
 | |
|     { fprintf(stderr,
 | |
|         "mod2sparse_forward_sub: Matrix is not lower-triangular\n");
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Solve system by forward substitution. */
 | |
| 
 | |
|   for (i = 0; i<K; i++)
 | |
|   { 
 | |
|     ii = rows ? rows[i] : i;
 | |
| 
 | |
|     /* Look at bits in this row, forming inner product with partial 
 | |
|        solution, and seeing if the diagonal is 1. */
 | |
| 
 | |
|     d = 0;
 | |
|     b = 0;
 | |
| 
 | |
|     for (e = mod2sparse_first_in_row(L,ii); 
 | |
|          !mod2sparse_at_end(e);
 | |
|          e = mod2sparse_next_in_row(e))
 | |
|     { 
 | |
|       j = mod2sparse_col(e);
 | |
| 
 | |
|       if (j==i)
 | |
|       { d = 1;
 | |
|       }
 | |
|       else
 | |
|       { b ^= y[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check for no solution if the diagonal isn't 1. */
 | |
| 
 | |
|     if (!d && b!=x[ii]) 
 | |
|     { return 0;
 | |
|     }
 | |
| 
 | |
|     /* Set bit of solution, zero if arbitrary. */
 | |
| 
 | |
|     y[i] = b^x[ii];
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* SOLVE AN UPPER-TRIANGULAR SYSTEM BY BACKWARD SUBSTITUTION. */
 | |
| 
 | |
| int mod2sparse_backward_sub
 | |
| ( mod2sparse *U,	/* Matrix that is upper triangular after reordering */
 | |
|   int *cols,		/* Array of indexes (from 0) of columns for new order */
 | |
|   char *y,		/* Vector on right of equation */
 | |
|   char *z		/* Place to store solution, also reordered */
 | |
| )
 | |
| {
 | |
|   int K, i, j, ii, b, d;
 | |
|   mod2entry *e;
 | |
| 
 | |
|   K = mod2sparse_rows(U);
 | |
| 
 | |
|   /* Make sure that U is upper-triangular, after column re-ordering. */
 | |
| 
 | |
|   for (i = 0; i<K; i++)
 | |
|   { ii = cols ? cols[i] : i;
 | |
|     e = mod2sparse_last_in_col(U,ii);
 | |
|     if (!mod2sparse_at_end(e) && mod2sparse_row(e)>i)
 | |
|     { fprintf(stderr,
 | |
|         "mod2sparse_backward_sub: Matrix is not upper-triangular\n");
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Solve system by backward substitution. */
 | |
| 
 | |
|   for (i = K-1; i>=0; i--)
 | |
|   { 
 | |
|     ii = cols ? cols[i] : i;
 | |
| 
 | |
|     /* Look at bits in this row, forming inner product with partial 
 | |
|        solution, and seeing if the diagonal is 1. */
 | |
| 
 | |
|     d = 0;
 | |
|     b = 0;
 | |
| 
 | |
|     for (e = mod2sparse_first_in_row(U,i); 
 | |
|          !mod2sparse_at_end(e);
 | |
|          e = mod2sparse_next_in_row(e))
 | |
|     { 
 | |
|       j = mod2sparse_col(e);
 | |
| 
 | |
|       if (j==ii)
 | |
|       { d = 1;
 | |
|       }
 | |
|       else
 | |
|       { b ^= z[j];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check for no solution if the diagonal isn't 1. */
 | |
| 
 | |
|     if (!d && b!=y[i]) 
 | |
|     { return 0;
 | |
|     }
 | |
| 
 | |
|     /* Set bit of solution, zero if arbitrary. */
 | |
| 
 | |
|     z[ii] = b^y[i];
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | 
