164 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			164 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  Soft-decision stack-based sequential decoder for K=32 r=1/2
 | |
|  convolutional code. This code implements the "stack-bucket" algorithm
 | |
|  described in:
 | |
|  "Fast Sequential Decoding Algorithm Using a Stack", F. Jelinek
 | |
|  
 | |
|  The ENCODE macro from Phil Karn's (KA9Q) Fano decoder is used.
 | |
|  
 | |
|  Written by Steve Franke, K9AN for WSJT-X (July 2015)
 | |
|  */
 | |
| 
 | |
| #include "jelinek.h"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <math.h>
 | |
| #include <string.h> /* memset */
 | |
| 
 | |
| #include "fano.h"
 | |
| 
 | |
| /* WSPR uses the Layland-Lushbaugh code
 | |
|  * Nonsystematic, non-quick look-in, dmin=?, dfree=?
 | |
|  */
 | |
| #define	POLY1	0xf2d05351
 | |
| #define	POLY2	0xe4613c47
 | |
| 
 | |
| //Decoder - returns 0 on success, -1 on timeout
 | |
| int jelinek(
 | |
|             unsigned int *metric,	/* Final path metric (returned value) */
 | |
|             unsigned int *cycles,	/* Cycle count (returned value) */
 | |
|             unsigned char *data,	/* Decoded output data */
 | |
|             unsigned char *symbols,	/* Raw deinterleaved input symbols */
 | |
|             unsigned int nbits,	/* Number of output bits */
 | |
|             unsigned int stacksize,
 | |
|             struct snode *stack,
 | |
|             int mettab[2][256],	/* Metric table, [sent sym][rx symbol] */
 | |
|             unsigned int maxcycles)/* Decoding timeout in cycles per bit */
 | |
| {
 | |
|     
 | |
|     // Compute branch metrics for each symbol pair
 | |
|     // The sequential decoding algorithm only uses the metrics, not the
 | |
|     // symbol values.
 | |
|     unsigned int i;
 | |
|     long int metrics[81][4];
 | |
|     for(i=0; i<nbits; i++){
 | |
|         metrics[i][0] = mettab[0][symbols[0]] + mettab[0][symbols[1]];
 | |
|         metrics[i][1] = mettab[0][symbols[0]] + mettab[1][symbols[1]];
 | |
|         metrics[i][2] = mettab[1][symbols[0]] + mettab[0][symbols[1]];
 | |
|         metrics[i][3] = mettab[1][symbols[0]] + mettab[1][symbols[1]];
 | |
|         symbols += 2;
 | |
|     }
 | |
|     
 | |
|     // zero the stack
 | |
|     memset(stack,0,stacksize*sizeof(struct snode));
 | |
|     
 | |
|     // initialize the loop variables
 | |
|     unsigned int lsym, ntail=31;
 | |
|     uint64_t encstate=0;
 | |
|     unsigned int nbuckets=1000;
 | |
|     unsigned int low_bucket=nbuckets-1; //will be set on first run-through
 | |
|     unsigned int high_bucket=0;
 | |
|     unsigned int *buckets, bucket;
 | |
|     buckets=malloc(nbuckets*sizeof(unsigned int));
 | |
|     memset(buckets,0,nbuckets*sizeof(unsigned int));
 | |
|     unsigned int ptr=1;
 | |
|     unsigned int stackptr=1; //pointer values of 0 are reserved (they mean that a bucket is empty)
 | |
|     unsigned int depth=0, nbits_minus_ntail=nbits-ntail;
 | |
|     unsigned int stacksize_minus_1=stacksize-1;
 | |
|     long int totmet0, totmet1, gamma=0;
 | |
|     
 | |
|     unsigned int ncycles=maxcycles*nbits;
 | |
|     /********************* Start the stack decoder *****************/
 | |
|     for (i=1; i <= ncycles; i++) {
 | |
| #ifdef DEBUG
 | |
|         printf("***stackptr=%ld, depth=%d, gamma=%d, encstate=%lx, bucket %d, low_bucket %d, high_bucket %d\n",
 | |
|                stackptr, depth, gamma, encstate, bucket, low_bucket, high_bucket);
 | |
| #endif
 | |
|         // no need to store more than 7 bytes (56 bits) for encoder state because
 | |
|         // only 50 bits are not 0's.
 | |
|         if( depth < 56 ) {
 | |
|             encstate=encstate<<1;
 | |
|             ENCODE(lsym,encstate); // get channel symbols associated with the 0 branch
 | |
|         } else {
 | |
|             ENCODE(lsym,encstate<<(depth-55));
 | |
|         }
 | |
| 
 | |
|         // lsym are the 0-branch channel symbols and 3^lsym are the 1-branch
 | |
|         // channel symbols (due to a special property of our generator polynomials)
 | |
|         totmet0 = gamma+metrics[depth][lsym];   // total metric for 0-branch daughter node
 | |
|         totmet1 = gamma+metrics[depth][3^lsym]; // total metric for 1-branch daughter node
 | |
|         depth++; //the depth of the daughter nodes
 | |
| 
 | |
|         bucket=(totmet0>>5)+200; //fast, but not particularly safe - totmet can be negative
 | |
|         if( bucket > high_bucket ) high_bucket=bucket;
 | |
|         if( bucket < low_bucket ) low_bucket=bucket;
 | |
|        
 | |
|         // place the 0 node on the stack, overwriting the parent (current) node
 | |
|         stack[ptr].encstate=encstate;
 | |
|         stack[ptr].gamma=totmet0;
 | |
|         stack[ptr].depth=depth;
 | |
|         stack[ptr].jpointer=buckets[bucket];
 | |
|         buckets[bucket]=ptr;
 | |
|         
 | |
|         // if in the tail, only need to evaluate the "0" branch.
 | |
|         // Otherwise, enter this "if" and place the 1 node on the stack,
 | |
|         if( depth <= nbits_minus_ntail ) {
 | |
|             if( stackptr < stacksize_minus_1 ) {
 | |
|                 stackptr++;
 | |
|                 ptr=stackptr;
 | |
|             } else { // stack full
 | |
|                 while( buckets[low_bucket] == 0 ) { //write latest to where the top of the lowest bucket points
 | |
|                     low_bucket++;
 | |
|                 }
 | |
|                 ptr=buckets[low_bucket];
 | |
|                 buckets[low_bucket]=stack[ptr].jpointer; //make bucket point to next older entry
 | |
|             }
 | |
| 
 | |
|             bucket=(totmet1>>5)+200; //this may not be safe on all compilers
 | |
|             if( bucket > high_bucket ) high_bucket=bucket;
 | |
|             if( bucket < low_bucket ) low_bucket=bucket;
 | |
|             
 | |
|             stack[ptr].encstate=encstate+1;
 | |
|             stack[ptr].gamma=totmet1;
 | |
|             stack[ptr].depth=depth;
 | |
|             stack[ptr].jpointer=buckets[bucket];
 | |
|             buckets[bucket]=ptr;
 | |
|         }
 | |
| 
 | |
|     // pick off the latest entry from the high bucket
 | |
|         while( buckets[high_bucket] == 0 ) {
 | |
|             high_bucket--;
 | |
|         }
 | |
|         ptr=buckets[high_bucket];
 | |
|         buckets[high_bucket]=stack[ptr].jpointer;
 | |
|         depth=stack[ptr].depth;
 | |
|         gamma=stack[ptr].gamma;
 | |
|         encstate=stack[ptr].encstate;
 | |
| 
 | |
|         // we are done if the top entry on the stack is at depth nbits
 | |
|         if (depth == nbits) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     *cycles = i+1;
 | |
|     *metric =  gamma;	/* Return final path metric */
 | |
| 
 | |
|     //    printf("cycles %d stackptr=%d, depth=%d, gamma=%d, encstate=%lx\n",
 | |
|     //           *cycles, stackptr, depth, *metric, encstate);
 | |
|     
 | |
|     for (i=0; i<7; i++) {
 | |
|         data[i]=(encstate>>(48-i*8))&(0x00000000000000ff);
 | |
|     }
 | |
|     for (i=7; i<11; i++) {
 | |
|         data[i]=0;
 | |
|     }
 | |
| 
 | |
|     if(*cycles/nbits >= maxcycles) //timed out
 | |
|     {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;		//success
 | |
| }
 |