143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			143 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| subroutine timf2(x0,k,nfft,nwindow,nb,peaklimit,x1,     &
 | |
|      slimit,lstrong,px,nzap)
 | |
| 
 | |
| ! Sequential processing of time-domain I/Q data, using Linrad-like
 | |
| ! "first FFT" and "first backward FFT", treating frequencies with
 | |
| ! strong signals differently.  Noise blanking is applied to weak
 | |
| ! signals only.
 | |
| 
 | |
| !  x0       - real input data
 | |
| !  nfft     - length of FFTs
 | |
| !  nwindow  - 0 for no window, 2 for sin^2 window
 | |
| !  x1       - real output data
 | |
| 
 | |
| ! Non-windowed processing means no overlap, so kstep=nfft.  
 | |
| ! Sin^2 window has 50% overlap, kstep=nfft/2.
 | |
| 
 | |
| ! Frequencies with strong signals are identified and separated.  Back
 | |
| ! transforms are done separately for weak and strong signals, so that
 | |
| ! noise blanking can be applied to the weak-signal portion.  Strong and
 | |
| ! weak are finally re-combined, in the time domain.
 | |
| 
 | |
|   parameter (MAXFFT=1024,MAXNH=MAXFFT/2)
 | |
|   parameter (MAXSIGS=100)
 | |
|   real x0(0:nfft-1),x1(0:nfft-1)
 | |
|   real x(0:MAXFFT-1),xw(0:MAXFFT-1),xs(0:MAXFFT-1)
 | |
|   real xwov(0:MAXNH-1),xsov(0:MAXNH-1)
 | |
|   complex cx(0:MAXFFT-1),cxt(0:MAXFFT-1)
 | |
|   complex cxs(0:MAXFFT-1)                     !Strong signals
 | |
|   complex cxw(0:MAXFFT-1)                     !Weak signals
 | |
|   real*4 w(0:MAXFFT-1)
 | |
|   real*4 s(0:MAXNH)
 | |
|   logical*1 lstrong(0:MAXNH),lprev
 | |
|   integer ia(MAXSIGS),ib(MAXSIGS)
 | |
|   logical first
 | |
|   equivalence (x,cx),(xw,cxw),(xs,cxs)
 | |
|   data first/.true./
 | |
|   data k0/99999999/
 | |
|   save
 | |
| 
 | |
|   if(first) then
 | |
|      pi=4.0*atan(1.0)
 | |
|      do i=0,nfft-1
 | |
|         w(i)=(sin(i*pi/nfft))**2
 | |
|      enddo
 | |
|      s=0.
 | |
|      nh=nfft/2
 | |
|      kstep=nfft
 | |
|      if(nwindow.eq.2) kstep=nh
 | |
|      fac=1.0/nfft
 | |
|      slimit=1.e30
 | |
|      first=.false.
 | |
|   endif
 | |
| 
 | |
|   if(k.lt.k0) then
 | |
|      xsov=0.
 | |
|      xwov=0.
 | |
|   endif
 | |
|   k0=k
 | |
| 
 | |
|   x(0:nfft-1)=x0
 | |
|   if(nwindow.eq.2) x(0:nfft-1)=w(0:nfft-1)*x(0:nfft-1)
 | |
|   call four2a(x,nfft,1,-1,0)                       !First forward FFT, r2c
 | |
|   cxt(0:nh)=cx(0:nh)
 | |
| 
 | |
| ! Identify frequencies with strong signals.
 | |
|   do i=0,nh
 | |
|      p=real(cxt(i))**2 + aimag(cxt(i))**2
 | |
|      s(i)=p
 | |
|   enddo
 | |
|   ave=sum(s(0:nh))/nh
 | |
|   lstrong(0:nh)=s(0:nh).gt.10.0*ave
 | |
| 
 | |
|   nsigs=0
 | |
|   lprev=.false.
 | |
|   iwid=1
 | |
|   ib=-99
 | |
|   do i=0,nh
 | |
|      if(lstrong(i) .and. (.not.lprev)) then
 | |
|         if(nsigs.lt.MAXSIGS) nsigs=nsigs+1
 | |
|         ia(nsigs)=i-iwid
 | |
|         if(ia(nsigs).lt.0) ia(nsigs)=0
 | |
|      endif
 | |
|      if(.not.lstrong(i) .and. lprev) then
 | |
|         ib(nsigs)=i-1+iwid
 | |
|         if(ib(nsigs).gt.nh) ib(nsigs)=nh
 | |
|      endif
 | |
|      lprev=lstrong(i)
 | |
|   enddo
 | |
| 
 | |
|   if(nsigs.gt.0) then
 | |
|      do i=1,nsigs
 | |
|         ja=ia(i)
 | |
|         jb=ib(i)
 | |
|         if(ja.lt.0 .or. ja.gt.nh .or. jb.lt.0 .or. jb.gt.nh) then
 | |
|            cycle
 | |
|         endif
 | |
|         if(jb.eq.-99) jb=ja + min(2*iwid,nh)
 | |
|         lstrong(ja:jb)=.true.
 | |
|      enddo
 | |
|   endif
 | |
| 
 | |
| ! Copy frequency-domain data into array cs (strong) or cw (weak).
 | |
|   do i=0,nh
 | |
|      if(lstrong(i)) then
 | |
|         cxs(i)=fac*cxt(i)
 | |
|         cxw(i)=0.
 | |
|      else
 | |
|         cxw(i)=fac*cxt(i)
 | |
|         cxs(i)=0.
 | |
|      endif
 | |
|   enddo
 | |
| 
 | |
|   call four2a(cxw,nfft,1,1,-1)           !Transform weak and strong back
 | |
|   call four2a(cxs,nfft,1,1,-1)           !to time domain, separately (c2r)
 | |
| 
 | |
|   if(nwindow.eq.2) then
 | |
|      xw(0:nh-1)=xw(0:nh-1)+xwov(0:nh-1)     !Add previous segment's 2nd half
 | |
|      xwov(0:nh-1)=xw(nh:nfft-1)             !Save 2nd half
 | |
|      xs(0:nh-1)=xs(0:nh-1)+xsov(0:nh-1)     !Ditto for strong signals
 | |
|      xsov(0:nh-1)=xs(nh:nfft-1)
 | |
|   endif
 | |
| 
 | |
| ! Apply noise blanking to weak data
 | |
|   if(nb.ne.0) then
 | |
|      do i=0,kstep-1
 | |
|         peak=abs(xw(i))
 | |
|         if(peak.gt.peaklimit) then
 | |
|            xw(i)=0.
 | |
|            nzap=nzap+1
 | |
|         endif
 | |
|      enddo
 | |
|   endif
 | |
| 
 | |
| ! Compute power levels from weak data only
 | |
|   do i=0,kstep-1
 | |
|      px=px + xw(i)**2
 | |
|   enddo
 | |
| 
 | |
|   x1(0:kstep-1)=xw(0:kstep-1) + xs(0:kstep-1)     !Recombine weak + strong
 | |
| 
 | |
|   return
 | |
| end subroutine timf2
 |