js8call/.svn/pristine/66/664507632e443b7c83abcc5297635f643a167f21.svn-base
2018-02-08 21:28:33 -05:00

1639 lines
78 KiB
Plaintext

//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_MATRIX_ASSIGN_
#define _BOOST_UBLAS_MATRIX_ASSIGN_
#include <boost/numeric/ublas/traits.hpp>
// Required for make_conformant storage
#include <vector>
// Iterators based on ideas of Jeremy Siek
namespace boost { namespace numeric { namespace ublas {
namespace detail {
// Weak equality check - useful to compare equality two arbitary matrix expression results.
// Since the actual expressions are unknown, we check for and arbitary error bound
// on the relative error.
// For a linear expression the infinity norm makes sense as we do not know how the elements will be
// combined in the expression. False positive results are inevitable for arbirary expressions!
template<class E1, class E2, class S>
BOOST_UBLAS_INLINE
bool equals (const matrix_expression<E1> &e1, const matrix_expression<E2> &e2, S epsilon, S min_norm) {
return norm_inf (e1 - e2) < epsilon *
std::max<S> (std::max<S> (norm_inf (e1), norm_inf (e2)), min_norm);
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
bool expression_type_check (const matrix_expression<E1> &e1, const matrix_expression<E2> &e2) {
typedef typename type_traits<typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type>::real_type real_type;
return equals (e1, e2, BOOST_UBLAS_TYPE_CHECK_EPSILON, BOOST_UBLAS_TYPE_CHECK_MIN);
}
template<class M, class E, class R>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void make_conformant (M &m, const matrix_expression<E> &e, row_major_tag, R) {
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
// FIXME unbounded_array with push_back maybe better
std::vector<std::pair<size_type, size_type> > index;
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
typename E::const_iterator1 it1e (e ().begin1 ());
typename E::const_iterator1 it1e_end (e ().end1 ());
while (it1 != it1_end && it1e != it1e_end) {
difference_type compare = it1.index1 () - it1e.index1 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
if (it2 != it2_end && it2e != it2e_end) {
size_type it2_index = it2.index2 (), it2e_index = it2e.index2 ();
while (true) {
difference_type compare2 = it2_index - it2e_index;
if (compare2 == 0) {
++ it2, ++ it2e;
if (it2 != it2_end && it2e != it2e_end) {
it2_index = it2.index2 ();
it2e_index = it2e.index2 ();
} else
break;
} else if (compare2 < 0) {
increment (it2, it2_end, - compare2);
if (it2 != it2_end)
it2_index = it2.index2 ();
else
break;
} else if (compare2 > 0) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (static_cast<value_type>(*it2e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
if (it2e != it2e_end)
it2e_index = it2e.index2 ();
else
break;
}
}
}
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (static_cast<value_type>(*it2e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1, ++ it1e;
} else if (compare < 0) {
increment (it1, it1_end, - compare);
} else if (compare > 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (static_cast<value_type>(*it2e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1e;
}
}
while (it1e != it1e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
while (it2e != it2e_end) {
if (conformant_restrict_type::other (it2e.index1 (), it2e.index2 ()))
if (static_cast<value_type>(*it2e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it2e.index1 (), it2e.index2 ()));
++ it2e;
}
++ it1e;
}
// ISSUE proxies require insert_element
for (size_type k = 0; k < index.size (); ++ k)
m (index [k].first, index [k].second) = value_type/*zero*/();
}
template<class M, class E, class R>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void make_conformant (M &m, const matrix_expression<E> &e, column_major_tag, R) {
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
typedef typename M::value_type value_type;
std::vector<std::pair<size_type, size_type> > index;
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
while (it2 != it2_end && it2e != it2e_end) {
difference_type compare = it2.index2 () - it2e.index2 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
if (it1 != it1_end && it1e != it1e_end) {
size_type it1_index = it1.index1 (), it1e_index = it1e.index1 ();
while (true) {
difference_type compare2 = it1_index - it1e_index;
if (compare2 == 0) {
++ it1, ++ it1e;
if (it1 != it1_end && it1e != it1e_end) {
it1_index = it1.index1 ();
it1e_index = it1e.index1 ();
} else
break;
} else if (compare2 < 0) {
increment (it1, it1_end, - compare2);
if (it1 != it1_end)
it1_index = it1.index1 ();
else
break;
} else if (compare2 > 0) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (static_cast<value_type>(*it1e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
if (it1e != it1e_end)
it1e_index = it1e.index1 ();
else
break;
}
}
}
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (static_cast<value_type>(*it1e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2, ++ it2e;
} else if (compare < 0) {
increment (it2, it2_end, - compare);
} else if (compare > 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (static_cast<value_type>(*it1e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2e;
}
}
while (it2e != it2e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
while (it1e != it1e_end) {
if (conformant_restrict_type::other (it1e.index1 (), it1e.index2 ()))
if (static_cast<value_type>(*it1e) != value_type/*zero*/())
index.push_back (std::pair<size_type, size_type> (it1e.index1 (), it1e.index2 ()));
++ it1e;
}
++ it2e;
}
// ISSUE proxies require insert_element
for (size_type k = 0; k < index.size (); ++ k)
m (index [k].first, index [k].second) = value_type/*zero*/();
}
}//namespace detail
// Explicitly iterating row major
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_matrix_assign_scalar (M &m, const T &t, row_major_tag) {
typedef F<typename M::iterator2::reference, T> functor_type;
typedef typename M::difference_type difference_type;
difference_type size1 (m.size1 ());
difference_type size2 (m.size2 ());
typename M::iterator1 it1 (m.begin1 ());
BOOST_UBLAS_CHECK (size2 == 0 || m.end1 () - it1 == size1, bad_size ());
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
#endif
BOOST_UBLAS_CHECK (it1.end () - it2 == size2, bad_size ());
difference_type temp_size2 (size2);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- temp_size2 >= 0)
functor_type::apply (*it2, t), ++ it2;
#else
DD (temp_size2, 4, r, (functor_type::apply (*it2, t), ++ it2));
#endif
++ it1;
}
}
// Explicitly iterating column major
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_matrix_assign_scalar (M &m, const T &t, column_major_tag) {
typedef F<typename M::iterator1::reference, T> functor_type;
typedef typename M::difference_type difference_type;
difference_type size2 (m.size2 ());
difference_type size1 (m.size1 ());
typename M::iterator2 it2 (m.begin2 ());
BOOST_UBLAS_CHECK (size1 == 0 || m.end2 () - it2 == size2, bad_size ());
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
#endif
BOOST_UBLAS_CHECK (it2.end () - it1 == size1, bad_size ());
difference_type temp_size1 (size1);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- temp_size1 >= 0)
functor_type::apply (*it1, t), ++ it1;
#else
DD (temp_size1, 4, r, (functor_type::apply (*it1, t), ++ it1));
#endif
++ it2;
}
}
// Explicitly indexing row major
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_matrix_assign_scalar (M &m, const T &t, row_major_tag) {
typedef F<typename M::reference, T> functor_type;
typedef typename M::size_type size_type;
size_type size1 (m.size1 ());
size_type size2 (m.size2 ());
for (size_type i = 0; i < size1; ++ i) {
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type j = 0; j < size2; ++ j)
functor_type::apply (m (i, j), t);
#else
size_type j (0);
DD (size2, 4, r, (functor_type::apply (m (i, j), t), ++ j));
#endif
}
}
// Explicitly indexing column major
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_matrix_assign_scalar (M &m, const T &t, column_major_tag) {
typedef F<typename M::reference, T> functor_type;
typedef typename M::size_type size_type;
size_type size2 (m.size2 ());
size_type size1 (m.size1 ());
for (size_type j = 0; j < size2; ++ j) {
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type i = 0; i < size1; ++ i)
functor_type::apply (m (i, j), t);
#else
size_type i (0);
DD (size1, 4, r, (functor_type::apply (m (i, j), t), ++ i));
#endif
}
}
// Dense (proxy) case
template<template <class T1, class T2> class F, class M, class T, class C>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign_scalar (M &m, const T &t, dense_proxy_tag, C) {
typedef C orientation_category;
#ifdef BOOST_UBLAS_USE_INDEXING
indexing_matrix_assign_scalar<F> (m, t, orientation_category ());
#elif BOOST_UBLAS_USE_ITERATING
iterating_matrix_assign_scalar<F> (m, t, orientation_category ());
#else
typedef typename M::size_type size_type;
size_type size1 (m.size1 ());
size_type size2 (m.size2 ());
if (size1 >= BOOST_UBLAS_ITERATOR_THRESHOLD &&
size2 >= BOOST_UBLAS_ITERATOR_THRESHOLD)
iterating_matrix_assign_scalar<F> (m, t, orientation_category ());
else
indexing_matrix_assign_scalar<F> (m, t, orientation_category ());
#endif
}
// Packed (proxy) row major case
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign_scalar (M &m, const T &t, packed_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, T> functor_type;
typedef typename M::difference_type difference_type;
typename M::iterator1 it1 (m.begin1 ());
difference_type size1 (m.end1 () - it1);
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
difference_type size2 (it1.end () - it2);
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
difference_type size2 (end (it1, iterator1_tag ()) - it2);
#endif
while (-- size2 >= 0)
functor_type::apply (*it2, t), ++ it2;
++ it1;
}
}
// Packed (proxy) column major case
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign_scalar (M &m, const T &t, packed_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, T> functor_type;
typedef typename M::difference_type difference_type;
typename M::iterator2 it2 (m.begin2 ());
difference_type size2 (m.end2 () - it2);
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
difference_type size1 (it2.end () - it1);
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
difference_type size1 (end (it2, iterator2_tag ()) - it1);
#endif
while (-- size1 >= 0)
functor_type::apply (*it1, t), ++ it1;
++ it2;
}
}
// Sparse (proxy) row major case
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign_scalar (M &m, const T &t, sparse_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, T> functor_type;
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end)
functor_type::apply (*it2, t), ++ it2;
++ it1;
}
}
// Sparse (proxy) column major case
template<template <class T1, class T2> class F, class M, class T>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign_scalar (M &m, const T &t, sparse_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, T> functor_type;
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end)
functor_type::apply (*it1, t), ++ it1;
++ it2;
}
}
// Dispatcher
template<template <class T1, class T2> class F, class M, class T>
BOOST_UBLAS_INLINE
void matrix_assign_scalar (M &m, const T &t) {
typedef typename M::storage_category storage_category;
typedef typename M::orientation_category orientation_category;
matrix_assign_scalar<F> (m, t, storage_category (), orientation_category ());
}
template<class SC, bool COMPUTED, class RI1, class RI2>
struct matrix_assign_traits {
typedef SC storage_category;
};
template<bool COMPUTED>
struct matrix_assign_traits<dense_tag, COMPUTED, packed_random_access_iterator_tag, packed_random_access_iterator_tag> {
typedef packed_tag storage_category;
};
template<>
struct matrix_assign_traits<dense_tag, false, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_tag storage_category;
};
template<>
struct matrix_assign_traits<dense_tag, true, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<bool COMPUTED>
struct matrix_assign_traits<dense_proxy_tag, COMPUTED, packed_random_access_iterator_tag, packed_random_access_iterator_tag> {
typedef packed_proxy_tag storage_category;
};
template<bool COMPUTED>
struct matrix_assign_traits<dense_proxy_tag, COMPUTED, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_assign_traits<packed_tag, false, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_tag storage_category;
};
template<>
struct matrix_assign_traits<packed_tag, true, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<bool COMPUTED>
struct matrix_assign_traits<packed_proxy_tag, COMPUTED, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_assign_traits<sparse_tag, true, dense_random_access_iterator_tag, dense_random_access_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_assign_traits<sparse_tag, true, packed_random_access_iterator_tag, packed_random_access_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_assign_traits<sparse_tag, true, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
// Explicitly iterating row major
template<template <class T1, class T2> class F, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_matrix_assign (M &m, const matrix_expression<E> &e, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::value_type> functor_type;
typedef typename M::difference_type difference_type;
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), e ().size1 ()));
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), e ().size2 ()));
typename M::iterator1 it1 (m.begin1 ());
BOOST_UBLAS_CHECK (size2 == 0 || m.end1 () - it1 == size1, bad_size ());
typename E::const_iterator1 it1e (e ().begin1 ());
BOOST_UBLAS_CHECK (size2 == 0 || e ().end1 () - it1e == size1, bad_size ());
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename E::const_iterator2 it2e (it1e.begin ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
#endif
BOOST_UBLAS_CHECK (it1.end () - it2 == size2, bad_size ());
BOOST_UBLAS_CHECK (it1e.end () - it2e == size2, bad_size ());
difference_type temp_size2 (size2);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- temp_size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
#else
DD (temp_size2, 2, r, (functor_type::apply (*it2, *it2e), ++ it2, ++ it2e));
#endif
++ it1, ++ it1e;
}
}
// Explicitly iterating column major
template<template <class T1, class T2> class F, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void iterating_matrix_assign (M &m, const matrix_expression<E> &e, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::value_type> functor_type;
typedef typename M::difference_type difference_type;
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), e ().size2 ()));
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), e ().size1 ()));
typename M::iterator2 it2 (m.begin2 ());
BOOST_UBLAS_CHECK (size1 == 0 || m.end2 () - it2 == size2, bad_size ());
typename E::const_iterator2 it2e (e ().begin2 ());
BOOST_UBLAS_CHECK (size1 == 0 || e ().end2 () - it2e == size2, bad_size ());
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename E::const_iterator1 it1e (it2e.begin ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
#endif
BOOST_UBLAS_CHECK (it2.end () - it1 == size1, bad_size ());
BOOST_UBLAS_CHECK (it2e.end () - it1e == size1, bad_size ());
difference_type temp_size1 (size1);
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
while (-- temp_size1 >= 0)
functor_type::apply (*it1, *it1e), ++ it1, ++ it1e;
#else
DD (temp_size1, 2, r, (functor_type::apply (*it1, *it1e), ++ it1, ++ it1e));
#endif
++ it2, ++ it2e;
}
}
// Explicitly indexing row major
template<template <class T1, class T2> class F, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_matrix_assign (M &m, const matrix_expression<E> &e, row_major_tag) {
typedef F<typename M::reference, typename E::value_type> functor_type;
typedef typename M::size_type size_type;
size_type size1 (BOOST_UBLAS_SAME (m.size1 (), e ().size1 ()));
size_type size2 (BOOST_UBLAS_SAME (m.size2 (), e ().size2 ()));
for (size_type i = 0; i < size1; ++ i) {
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type j = 0; j < size2; ++ j)
functor_type::apply (m (i, j), e () (i, j));
#else
size_type j (0);
DD (size2, 2, r, (functor_type::apply (m (i, j), e () (i, j)), ++ j));
#endif
}
}
// Explicitly indexing column major
template<template <class T1, class T2> class F, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void indexing_matrix_assign (M &m, const matrix_expression<E> &e, column_major_tag) {
typedef F<typename M::reference, typename E::value_type> functor_type;
typedef typename M::size_type size_type;
size_type size2 (BOOST_UBLAS_SAME (m.size2 (), e ().size2 ()));
size_type size1 (BOOST_UBLAS_SAME (m.size1 (), e ().size1 ()));
for (size_type j = 0; j < size2; ++ j) {
#ifndef BOOST_UBLAS_USE_DUFF_DEVICE
for (size_type i = 0; i < size1; ++ i)
functor_type::apply (m (i, j), e () (i, j));
#else
size_type i (0);
DD (size1, 2, r, (functor_type::apply (m (i, j), e () (i, j)), ++ i));
#endif
}
}
// Dense (proxy) case
template<template <class T1, class T2> class F, class R, class M, class E, class C>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, dense_proxy_tag, C) {
// R unnecessary, make_conformant not required
typedef C orientation_category;
#ifdef BOOST_UBLAS_USE_INDEXING
indexing_matrix_assign<F> (m, e, orientation_category ());
#elif BOOST_UBLAS_USE_ITERATING
iterating_matrix_assign<F> (m, e, orientation_category ());
#else
typedef typename M::difference_type difference_type;
size_type size1 (BOOST_UBLAS_SAME (m.size1 (), e ().size1 ()));
size_type size2 (BOOST_UBLAS_SAME (m.size2 (), e ().size2 ()));
if (size1 >= BOOST_UBLAS_ITERATOR_THRESHOLD &&
size2 >= BOOST_UBLAS_ITERATOR_THRESHOLD)
iterating_matrix_assign<F> (m, e, orientation_category ());
else
indexing_matrix_assign<F> (m, e, orientation_category ());
#endif
}
// Packed (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, packed_proxy_tag, row_major_tag) {
typedef typename matrix_traits<E>::value_type expr_value_type;
typedef F<typename M::iterator2::reference, expr_value_type> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
#if BOOST_UBLAS_TYPE_CHECK
typedef typename M::value_type value_type;
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign<scalar_assign> (cm, m, row_major_tag ());
indexing_matrix_assign<F> (cm, e, row_major_tag ());
#endif
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
typename E::const_iterator1 it1e (e ().begin1 ());
typename E::const_iterator1 it1e_end (e ().end1 ());
difference_type it1_size (it1_end - it1);
difference_type it1e_size (it1e_end - it1e);
difference_type diff1 (0);
if (it1_size > 0 && it1e_size > 0)
diff1 = it1.index1 () - it1e.index1 ();
if (diff1 != 0) {
difference_type size1 = (std::min) (diff1, it1e_size);
if (size1 > 0) {
it1e += size1;
it1e_size -= size1;
diff1 -= size1;
}
size1 = (std::min) (- diff1, it1_size);
if (size1 > 0) {
it1_size -= size1;
if (!functor_type::computed) {
while (-- size1 >= 0) { // zeroing
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
difference_type size2 (it2_end - it2);
while (-- size2 >= 0)
functor_type::apply (*it2, expr_value_type/*zero*/()), ++ it2;
++ it1;
}
} else {
it1 += size1;
}
diff1 += size1;
}
}
difference_type size1 ((std::min) (it1_size, it1e_size));
it1_size -= size1;
it1e_size -= size1;
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
difference_type it2_size (it2_end - it2);
difference_type it2e_size (it2e_end - it2e);
difference_type diff2 (0);
if (it2_size > 0 && it2e_size > 0) {
diff2 = it2.index2 () - it2e.index2 ();
difference_type size2 = (std::min) (diff2, it2e_size);
if (size2 > 0) {
it2e += size2;
it2e_size -= size2;
diff2 -= size2;
}
size2 = (std::min) (- diff2, it2_size);
if (size2 > 0) {
it2_size -= size2;
if (!functor_type::computed) {
while (-- size2 >= 0) // zeroing
functor_type::apply (*it2, expr_value_type/*zero*/()), ++ it2;
} else {
it2 += size2;
}
diff2 += size2;
}
}
difference_type size2 ((std::min) (it2_size, it2e_size));
it2_size -= size2;
it2e_size -= size2;
while (-- size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
size2 = it2_size;
if (!functor_type::computed) {
while (-- size2 >= 0) // zeroing
functor_type::apply (*it2, expr_value_type/*zero*/()), ++ it2;
} else {
it2 += size2;
}
++ it1, ++ it1e;
}
size1 = it1_size;
if (!functor_type::computed) {
while (-- size1 >= 0) { // zeroing
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
difference_type size2 (it2_end - it2);
while (-- size2 >= 0)
functor_type::apply (*it2, expr_value_type/*zero*/()), ++ it2;
++ it1;
}
} else {
it1 += size1;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Packed (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, packed_proxy_tag, column_major_tag) {
typedef typename matrix_traits<E>::value_type expr_value_type;
typedef F<typename M::iterator1::reference, expr_value_type> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
#if BOOST_UBLAS_TYPE_CHECK
typedef typename M::value_type value_type;
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign<scalar_assign> (cm, m, column_major_tag ());
indexing_matrix_assign<F> (cm, e, column_major_tag ());
#endif
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
difference_type it2_size (it2_end - it2);
difference_type it2e_size (it2e_end - it2e);
difference_type diff2 (0);
if (it2_size > 0 && it2e_size > 0)
diff2 = it2.index2 () - it2e.index2 ();
if (diff2 != 0) {
difference_type size2 = (std::min) (diff2, it2e_size);
if (size2 > 0) {
it2e += size2;
it2e_size -= size2;
diff2 -= size2;
}
size2 = (std::min) (- diff2, it2_size);
if (size2 > 0) {
it2_size -= size2;
if (!functor_type::computed) {
while (-- size2 >= 0) { // zeroing
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
difference_type size1 (it1_end - it1);
while (-- size1 >= 0)
functor_type::apply (*it1, expr_value_type/*zero*/()), ++ it1;
++ it2;
}
} else {
it2 += size2;
}
diff2 += size2;
}
}
difference_type size2 ((std::min) (it2_size, it2e_size));
it2_size -= size2;
it2e_size -= size2;
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
difference_type it1_size (it1_end - it1);
difference_type it1e_size (it1e_end - it1e);
difference_type diff1 (0);
if (it1_size > 0 && it1e_size > 0) {
diff1 = it1.index1 () - it1e.index1 ();
difference_type size1 = (std::min) (diff1, it1e_size);
if (size1 > 0) {
it1e += size1;
it1e_size -= size1;
diff1 -= size1;
}
size1 = (std::min) (- diff1, it1_size);
if (size1 > 0) {
it1_size -= size1;
if (!functor_type::computed) {
while (-- size1 >= 0) // zeroing
functor_type::apply (*it1, expr_value_type/*zero*/()), ++ it1;
} else {
it1 += size1;
}
diff1 += size1;
}
}
difference_type size1 ((std::min) (it1_size, it1e_size));
it1_size -= size1;
it1e_size -= size1;
while (-- size1 >= 0)
functor_type::apply (*it1, *it1e), ++ it1, ++ it1e;
size1 = it1_size;
if (!functor_type::computed) {
while (-- size1 >= 0) // zeroing
functor_type::apply (*it1, expr_value_type/*zero*/()), ++ it1;
} else {
it1 += size1;
}
++ it2, ++ it2e;
}
size2 = it2_size;
if (!functor_type::computed) {
while (-- size2 >= 0) { // zeroing
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
difference_type size1 (it1_end - it1);
while (-- size1 >= 0)
functor_type::apply (*it1, expr_value_type/*zero*/()), ++ it1;
++ it2;
}
} else {
it2 += size2;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Sparse row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, sparse_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::value_type> functor_type;
// R unnecessary, make_conformant not required
BOOST_STATIC_ASSERT ((!functor_type::computed));
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef typename M::value_type value_type;
// Sparse type has no numeric constraints to check
m.clear ();
typename E::const_iterator1 it1e (e ().begin1 ());
typename E::const_iterator1 it1e_end (e ().end1 ());
while (it1e != it1e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
while (it2e != it2e_end) {
value_type t (*it2e);
if (t != value_type/*zero*/())
m.insert_element (it2e.index1 (), it2e.index2 (), t);
++ it2e;
}
++ it1e;
}
}
// Sparse column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, sparse_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::value_type> functor_type;
// R unnecessary, make_conformant not required
BOOST_STATIC_ASSERT ((!functor_type::computed));
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
typedef typename M::value_type value_type;
// Sparse type has no numeric constraints to check
m.clear ();
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
while (it2e != it2e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
while (it1e != it1e_end) {
value_type t (*it1e);
if (t != value_type/*zero*/())
m.insert_element (it1e.index1 (), it1e.index2 (), t);
++ it1e;
}
++ it2e;
}
}
// Sparse proxy or functional row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, sparse_proxy_tag, row_major_tag) {
typedef typename matrix_traits<E>::value_type expr_value_type;
typedef F<typename M::iterator2::reference, expr_value_type> functor_type;
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
#if BOOST_UBLAS_TYPE_CHECK
typedef typename M::value_type value_type;
matrix<value_type, row_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign<scalar_assign> (cm, m, row_major_tag ());
indexing_matrix_assign<F> (cm, e, row_major_tag ());
#endif
detail::make_conformant (m, e, row_major_tag (), conformant_restrict_type ());
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
typename E::const_iterator1 it1e (e ().begin1 ());
typename E::const_iterator1 it1e_end (e ().end1 ());
while (it1 != it1_end && it1e != it1e_end) {
difference_type compare = it1.index1 () - it1e.index1 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
typename E::const_iterator2 it2e (it1e.begin ());
typename E::const_iterator2 it2e_end (it1e.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
typename E::const_iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::const_iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
if (it2 != it2_end && it2e != it2e_end) {
size_type it2_index = it2.index2 (), it2e_index = it2e.index2 ();
while (true) {
difference_type compare2 = it2_index - it2e_index;
if (compare2 == 0) {
functor_type::apply (*it2, *it2e);
++ it2, ++ it2e;
if (it2 != it2_end && it2e != it2e_end) {
it2_index = it2.index2 ();
it2e_index = it2e.index2 ();
} else
break;
} else if (compare2 < 0) {
if (!functor_type::computed) {
functor_type::apply (*it2, expr_value_type/*zero*/());
++ it2;
} else
increment (it2, it2_end, - compare2);
if (it2 != it2_end)
it2_index = it2.index2 ();
else
break;
} else if (compare2 > 0) {
increment (it2e, it2e_end, compare2);
if (it2e != it2e_end)
it2e_index = it2e.index2 ();
else
break;
}
}
}
if (!functor_type::computed) {
while (it2 != it2_end) { // zeroing
functor_type::apply (*it2, expr_value_type/*zero*/());
++ it2;
}
} else {
it2 = it2_end;
}
++ it1, ++ it1e;
} else if (compare < 0) {
if (!functor_type::computed) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) { // zeroing
functor_type::apply (*it2, expr_value_type/*zero*/());
++ it2;
}
++ it1;
} else {
increment (it1, it1_end, - compare);
}
} else if (compare > 0) {
increment (it1e, it1e_end, compare);
}
}
if (!functor_type::computed) {
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
while (it2 != it2_end) { // zeroing
functor_type::apply (*it2, expr_value_type/*zero*/());
++ it2;
}
++ it1;
}
} else {
it1 = it1_end;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Sparse proxy or functional column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_assign (M &m, const matrix_expression<E> &e, sparse_proxy_tag, column_major_tag) {
typedef typename matrix_traits<E>::value_type expr_value_type;
typedef F<typename M::iterator1::reference, expr_value_type> functor_type;
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
#if BOOST_UBLAS_TYPE_CHECK
typedef typename M::value_type value_type;
matrix<value_type, column_major> cm (m.size1 (), m.size2 ());
indexing_matrix_assign<scalar_assign> (cm, m, column_major_tag ());
indexing_matrix_assign<F> (cm, e, column_major_tag ());
#endif
detail::make_conformant (m, e, column_major_tag (), conformant_restrict_type ());
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::const_iterator2 it2e (e ().begin2 ());
typename E::const_iterator2 it2e_end (e ().end2 ());
while (it2 != it2_end && it2e != it2e_end) {
difference_type compare = it2.index2 () - it2e.index2 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::const_iterator1 it1e (it2e.begin ());
typename E::const_iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::const_iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::const_iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
if (it1 != it1_end && it1e != it1e_end) {
size_type it1_index = it1.index1 (), it1e_index = it1e.index1 ();
while (true) {
difference_type compare2 = it1_index - it1e_index;
if (compare2 == 0) {
functor_type::apply (*it1, *it1e);
++ it1, ++ it1e;
if (it1 != it1_end && it1e != it1e_end) {
it1_index = it1.index1 ();
it1e_index = it1e.index1 ();
} else
break;
} else if (compare2 < 0) {
if (!functor_type::computed) {
functor_type::apply (*it1, expr_value_type/*zero*/()); // zeroing
++ it1;
} else
increment (it1, it1_end, - compare2);
if (it1 != it1_end)
it1_index = it1.index1 ();
else
break;
} else if (compare2 > 0) {
increment (it1e, it1e_end, compare2);
if (it1e != it1e_end)
it1e_index = it1e.index1 ();
else
break;
}
}
}
if (!functor_type::computed) {
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, expr_value_type/*zero*/());
++ it1;
}
} else {
it1 = it1_end;
}
++ it2, ++ it2e;
} else if (compare < 0) {
if (!functor_type::computed) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, expr_value_type/*zero*/());
++ it1;
}
++ it2;
} else {
increment (it2, it2_end, - compare);
}
} else if (compare > 0) {
increment (it2e, it2e_end, compare);
}
}
if (!functor_type::computed) {
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
while (it1 != it1_end) { // zeroing
functor_type::apply (*it1, expr_value_type/*zero*/());
++ it1;
}
++ it2;
}
} else {
it2 = it2_end;
}
#if BOOST_UBLAS_TYPE_CHECK
if (! disable_type_check<bool>::value)
BOOST_UBLAS_CHECK (detail::expression_type_check (m, cm), external_logic ());
#endif
}
// Dispatcher
template<template <class T1, class T2> class F, class M, class E>
BOOST_UBLAS_INLINE
void matrix_assign (M &m, const matrix_expression<E> &e) {
typedef typename matrix_assign_traits<typename M::storage_category,
F<typename M::reference, typename E::value_type>::computed,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
typedef basic_full<typename M::size_type> unrestricted;
matrix_assign<F, unrestricted> (m, e, storage_category (), orientation_category ());
}
template<template <class T1, class T2> class F, class R, class M, class E>
BOOST_UBLAS_INLINE
void matrix_assign (M &m, const matrix_expression<E> &e) {
typedef R conformant_restrict_type;
typedef typename matrix_assign_traits<typename M::storage_category,
F<typename M::reference, typename E::value_type>::computed,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
matrix_assign<F, conformant_restrict_type> (m, e, storage_category (), orientation_category ());
}
template<class SC, class RI1, class RI2>
struct matrix_swap_traits {
typedef SC storage_category;
};
template<>
struct matrix_swap_traits<dense_proxy_tag, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
template<>
struct matrix_swap_traits<packed_proxy_tag, sparse_bidirectional_iterator_tag, sparse_bidirectional_iterator_tag> {
typedef sparse_proxy_tag storage_category;
};
// Dense (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, dense_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
//typedef typename M::size_type size_type; // gcc is complaining that this is not used, although this is not right
typedef typename M::difference_type difference_type;
typename M::iterator1 it1 (m.begin1 ());
typename E::iterator1 it1e (e ().begin1 ());
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), typename M::size_type (e ().end1 () - it1e)));
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename E::iterator2 it2e (it1e.begin ());
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), typename M::size_type (it1e.end () - it2e)));
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), typename M::size_type (end (it1e, iterator1_tag ()) - it2e)));
#endif
while (-- size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
++ it1, ++ it1e;
}
}
// Dense (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, dense_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
// typedef typename M::size_type size_type; // gcc is complaining that this is not used, although this is not right
typedef typename M::difference_type difference_type;
typename M::iterator2 it2 (m.begin2 ());
typename E::iterator2 it2e (e ().begin2 ());
difference_type size2 (BOOST_UBLAS_SAME (m.size2 (), typename M::size_type (e ().end2 () - it2e)));
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename E::iterator1 it1e (it2e.begin ());
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), typename M::size_type (it2e.end () - it1e)));
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
difference_type size1 (BOOST_UBLAS_SAME (m.size1 (), typename M::size_type (end (it2e, iterator2_tag ()) - it1e)));
#endif
while (-- size1 >= 0)
functor_type::apply (*it1, *it1e), ++ it1, ++ it1e;
++ it2, ++ it2e;
}
}
// Packed (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, packed_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::difference_type difference_type;
typename M::iterator1 it1 (m.begin1 ());
typename E::iterator1 it1e (e ().begin1 ());
difference_type size1 (BOOST_UBLAS_SAME (m.end1 () - it1, e ().end1 () - it1e));
while (-- size1 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename E::iterator2 it2e (it1e.begin ());
difference_type size2 (BOOST_UBLAS_SAME (it1.end () - it2, it1e.end () - it2e));
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
difference_type size2 (BOOST_UBLAS_SAME (end (it1, iterator1_tag ()) - it2, end (it1e, iterator1_tag ()) - it2e));
#endif
while (-- size2 >= 0)
functor_type::apply (*it2, *it2e), ++ it2, ++ it2e;
++ it1, ++ it1e;
}
}
// Packed (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, packed_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::reference> functor_type;
// R unnecessary, make_conformant not required
typedef typename M::difference_type difference_type;
typename M::iterator2 it2 (m.begin2 ());
typename E::iterator2 it2e (e ().begin2 ());
difference_type size2 (BOOST_UBLAS_SAME (m.end2 () - it2, e ().end2 () - it2e));
while (-- size2 >= 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename E::iterator1 it1e (it2e.begin ());
difference_type size1 (BOOST_UBLAS_SAME (it2.end () - it1, it2e.end () - it1e));
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
difference_type size1 (BOOST_UBLAS_SAME (end (it2, iterator2_tag ()) - it1, end (it2e, iterator2_tag ()) - it1e));
#endif
while (-- size1 >= 0)
functor_type::apply (*it1, *it1e), ++ it1, ++ it1e;
++ it2, ++ it2e;
}
}
// Sparse (proxy) row major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, sparse_proxy_tag, row_major_tag) {
typedef F<typename M::iterator2::reference, typename E::reference> functor_type;
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
detail::make_conformant (m, e, row_major_tag (), conformant_restrict_type ());
// FIXME should be a seperate restriction for E
detail::make_conformant (e (), m, row_major_tag (), conformant_restrict_type ());
typename M::iterator1 it1 (m.begin1 ());
typename M::iterator1 it1_end (m.end1 ());
typename E::iterator1 it1e (e ().begin1 ());
typename E::iterator1 it1e_end (e ().end1 ());
while (it1 != it1_end && it1e != it1e_end) {
difference_type compare = it1.index1 () - it1e.index1 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
typename E::iterator2 it2e (it1e.begin ());
typename E::iterator2 it2e_end (it1e.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
if (it2 != it2_end && it2e != it2e_end) {
size_type it2_index = it2.index2 (), it2e_index = it2e.index2 ();
while (true) {
difference_type compare2 = it2_index - it2e_index;
if (compare2 == 0) {
functor_type::apply (*it2, *it2e);
++ it2, ++ it2e;
if (it2 != it2_end && it2e != it2e_end) {
it2_index = it2.index2 ();
it2e_index = it2e.index2 ();
} else
break;
} else if (compare2 < 0) {
increment (it2, it2_end, - compare2);
if (it2 != it2_end)
it2_index = it2.index2 ();
else
break;
} else if (compare2 > 0) {
increment (it2e, it2e_end, compare2);
if (it2e != it2e_end)
it2e_index = it2e.index2 ();
else
break;
}
}
}
#if BOOST_UBLAS_TYPE_CHECK
increment (it2e, it2e_end);
increment (it2, it2_end);
#endif
++ it1, ++ it1e;
} else if (compare < 0) {
#if BOOST_UBLAS_TYPE_CHECK
while (it1.index1 () < it1e.index1 ()) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
increment (it2, it2_end);
++ it1;
}
#else
increment (it1, it1_end, - compare);
#endif
} else if (compare > 0) {
#if BOOST_UBLAS_TYPE_CHECK
while (it1e.index1 () < it1.index1 ()) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::iterator2 it2e (it1e.begin ());
typename E::iterator2 it2e_end (it1e.end ());
#else
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
increment (it2e, it2e_end);
++ it1e;
}
#else
increment (it1e, it1e_end, compare);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
while (it1e != it1e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::iterator2 it2e (it1e.begin ());
typename E::iterator2 it2e_end (it1e.end ());
#else
typename E::iterator2 it2e (begin (it1e, iterator1_tag ()));
typename E::iterator2 it2e_end (end (it1e, iterator1_tag ()));
#endif
increment (it2e, it2e_end);
++ it1e;
}
while (it1 != it1_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator2 it2 (it1.begin ());
typename M::iterator2 it2_end (it1.end ());
#else
typename M::iterator2 it2 (begin (it1, iterator1_tag ()));
typename M::iterator2 it2_end (end (it1, iterator1_tag ()));
#endif
increment (it2, it2_end);
++ it1;
}
#endif
}
// Sparse (proxy) column major case
template<template <class T1, class T2> class F, class R, class M, class E>
// BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
void matrix_swap (M &m, matrix_expression<E> &e, sparse_proxy_tag, column_major_tag) {
typedef F<typename M::iterator1::reference, typename E::reference> functor_type;
typedef R conformant_restrict_type;
typedef typename M::size_type size_type;
typedef typename M::difference_type difference_type;
BOOST_UBLAS_CHECK (m.size1 () == e ().size1 (), bad_size ());
BOOST_UBLAS_CHECK (m.size2 () == e ().size2 (), bad_size ());
detail::make_conformant (m, e, column_major_tag (), conformant_restrict_type ());
// FIXME should be a seperate restriction for E
detail::make_conformant (e (), m, column_major_tag (), conformant_restrict_type ());
typename M::iterator2 it2 (m.begin2 ());
typename M::iterator2 it2_end (m.end2 ());
typename E::iterator2 it2e (e ().begin2 ());
typename E::iterator2 it2e_end (e ().end2 ());
while (it2 != it2_end && it2e != it2e_end) {
difference_type compare = it2.index2 () - it2e.index2 ();
if (compare == 0) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
typename E::iterator1 it1e (it2e.begin ());
typename E::iterator1 it1e_end (it2e.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
if (it1 != it1_end && it1e != it1e_end) {
size_type it1_index = it1.index1 (), it1e_index = it1e.index1 ();
while (true) {
difference_type compare2 = it1_index - it1e_index;
if (compare2 == 0) {
functor_type::apply (*it1, *it1e);
++ it1, ++ it1e;
if (it1 != it1_end && it1e != it1e_end) {
it1_index = it1.index1 ();
it1e_index = it1e.index1 ();
} else
break;
} else if (compare2 < 0) {
increment (it1, it1_end, - compare2);
if (it1 != it1_end)
it1_index = it1.index1 ();
else
break;
} else if (compare2 > 0) {
increment (it1e, it1e_end, compare2);
if (it1e != it1e_end)
it1e_index = it1e.index1 ();
else
break;
}
}
}
#if BOOST_UBLAS_TYPE_CHECK
increment (it1e, it1e_end);
increment (it1, it1_end);
#endif
++ it2, ++ it2e;
} else if (compare < 0) {
#if BOOST_UBLAS_TYPE_CHECK
while (it2.index2 () < it2e.index2 ()) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
increment (it1, it1_end);
++ it2;
}
#else
increment (it2, it2_end, - compare);
#endif
} else if (compare > 0) {
#if BOOST_UBLAS_TYPE_CHECK
while (it2e.index2 () < it2.index2 ()) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::iterator1 it1e (it2e.begin ());
typename E::iterator1 it1e_end (it2e.end ());
#else
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
increment (it1e, it1e_end);
++ it2e;
}
#else
increment (it2e, it2e_end, compare);
#endif
}
}
#if BOOST_UBLAS_TYPE_CHECK
while (it2e != it2e_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename E::iterator1 it1e (it2e.begin ());
typename E::iterator1 it1e_end (it2e.end ());
#else
typename E::iterator1 it1e (begin (it2e, iterator2_tag ()));
typename E::iterator1 it1e_end (end (it2e, iterator2_tag ()));
#endif
increment (it1e, it1e_end);
++ it2e;
}
while (it2 != it2_end) {
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
typename M::iterator1 it1 (it2.begin ());
typename M::iterator1 it1_end (it2.end ());
#else
typename M::iterator1 it1 (begin (it2, iterator2_tag ()));
typename M::iterator1 it1_end (end (it2, iterator2_tag ()));
#endif
increment (it1, it1_end);
++ it2;
}
#endif
}
// Dispatcher
template<template <class T1, class T2> class F, class M, class E>
BOOST_UBLAS_INLINE
void matrix_swap (M &m, matrix_expression<E> &e) {
typedef typename matrix_swap_traits<typename M::storage_category,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
typedef basic_full<typename M::size_type> unrestricted;
matrix_swap<F, unrestricted> (m, e, storage_category (), orientation_category ());
}
template<template <class T1, class T2> class F, class R, class M, class E>
BOOST_UBLAS_INLINE
void matrix_swap (M &m, matrix_expression<E> &e) {
typedef R conformant_restrict_type;
typedef typename matrix_swap_traits<typename M::storage_category,
typename E::const_iterator1::iterator_category,
typename E::const_iterator2::iterator_category>::storage_category storage_category;
// give preference to matrix M's orientation if known
typedef typename boost::mpl::if_<boost::is_same<typename M::orientation_category, unknown_orientation_tag>,
typename E::orientation_category ,
typename M::orientation_category >::type orientation_category;
matrix_swap<F, conformant_restrict_type> (m, e, storage_category (), orientation_category ());
}
}}}
#endif