224 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2007 John Maddock
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| //
 | |
| // This is a partial header, do not include on it's own!!!
 | |
| //
 | |
| // Contains asymptotic expansions for Bessel J(v,x) and Y(v,x)
 | |
| // functions, as x -> INF.
 | |
| //
 | |
| #ifndef BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
 | |
| #define BOOST_MATH_SF_DETAIL_BESSEL_JY_ASYM_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/factorials.hpp>
 | |
| 
 | |
| namespace boost{ namespace math{ namespace detail{
 | |
| 
 | |
| template <class T>
 | |
| inline T asymptotic_bessel_amplitude(T v, T x)
 | |
| {
 | |
|    // Calculate the amplitude of J(v, x) and Y(v, x) for large
 | |
|    // x: see A&S 9.2.28.
 | |
|    BOOST_MATH_STD_USING
 | |
|    T s = 1;
 | |
|    T mu = 4 * v * v;
 | |
|    T txq = 2 * x;
 | |
|    txq *= txq;
 | |
| 
 | |
|    s += (mu - 1) / (2 * txq);
 | |
|    s += 3 * (mu - 1) * (mu - 9) / (txq * txq * 8);
 | |
|    s += 15 * (mu - 1) * (mu - 9) * (mu - 25) / (txq * txq * txq * 8 * 6);
 | |
| 
 | |
|    return sqrt(s * 2 / (constants::pi<T>() * x));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| T asymptotic_bessel_phase_mx(T v, T x)
 | |
| {
 | |
|    //
 | |
|    // Calculate the phase of J(v, x) and Y(v, x) for large x.
 | |
|    // See A&S 9.2.29.
 | |
|    // Note that the result returned is the phase less (x - PI(v/2 + 1/4))
 | |
|    // which we'll factor in later when we calculate the sines/cosines of the result:
 | |
|    //
 | |
|    T mu = 4 * v * v;
 | |
|    T denom = 4 * x;
 | |
|    T denom_mult = denom * denom;
 | |
| 
 | |
|    T s = 0;
 | |
|    s += (mu - 1) / (2 * denom);
 | |
|    denom *= denom_mult;
 | |
|    s += (mu - 1) * (mu - 25) / (6 * denom);
 | |
|    denom *= denom_mult;
 | |
|    s += (mu - 1) * (mu * mu - 114 * mu + 1073) / (5 * denom);
 | |
|    denom *= denom_mult;
 | |
|    s += (mu - 1) * (5 * mu * mu * mu - 1535 * mu * mu + 54703 * mu - 375733) / (14 * denom);
 | |
|    return s;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T asymptotic_bessel_y_large_x_2(T v, T x)
 | |
| {
 | |
|    // See A&S 9.2.19.
 | |
|    BOOST_MATH_STD_USING
 | |
|    // Get the phase and amplitude:
 | |
|    T ampl = asymptotic_bessel_amplitude(v, x);
 | |
|    T phase = asymptotic_bessel_phase_mx(v, x);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(phase);
 | |
|    //
 | |
|    // Calculate the sine of the phase, using
 | |
|    // sine/cosine addition rules to factor in
 | |
|    // the x - PI(v/2 + 1/4) term not added to the
 | |
|    // phase when we calculated it.
 | |
|    //
 | |
|    T cx = cos(x);
 | |
|    T sx = sin(x);
 | |
|    T ci = cos_pi(v / 2 + 0.25f);
 | |
|    T si = sin_pi(v / 2 + 0.25f);
 | |
|    T sin_phase = sin(phase) * (cx * ci + sx * si) + cos(phase) * (sx * ci - cx * si);
 | |
|    BOOST_MATH_INSTRUMENT_CODE(sin(phase));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(cos(x));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(cos(phase));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(sin(x));
 | |
|    return sin_phase * ampl;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T asymptotic_bessel_j_large_x_2(T v, T x)
 | |
| {
 | |
|    // See A&S 9.2.19.
 | |
|    BOOST_MATH_STD_USING
 | |
|    // Get the phase and amplitude:
 | |
|    T ampl = asymptotic_bessel_amplitude(v, x);
 | |
|    T phase = asymptotic_bessel_phase_mx(v, x);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(ampl);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(phase);
 | |
|    //
 | |
|    // Calculate the sine of the phase, using
 | |
|    // sine/cosine addition rules to factor in
 | |
|    // the x - PI(v/2 + 1/4) term not added to the
 | |
|    // phase when we calculated it.
 | |
|    //
 | |
|    BOOST_MATH_INSTRUMENT_CODE(cos(phase));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(cos(x));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(sin(phase));
 | |
|    BOOST_MATH_INSTRUMENT_CODE(sin(x));
 | |
|    T cx = cos(x);
 | |
|    T sx = sin(x);
 | |
|    T ci = cos_pi(v / 2 + 0.25f);
 | |
|    T si = sin_pi(v / 2 + 0.25f);
 | |
|    T sin_phase = cos(phase) * (cx * ci + sx * si) - sin(phase) * (sx * ci - cx * si);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(sin_phase);
 | |
|    return sin_phase * ampl;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline bool asymptotic_bessel_large_x_limit(int v, const T& x)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|       //
 | |
|       // Determines if x is large enough compared to v to take the asymptotic
 | |
|       // forms above.  From A&S 9.2.28 we require: 
 | |
|       //    v < x * eps^1/8
 | |
|       // and from A&S 9.2.29 we require:
 | |
|       //    v^12/10 < 1.5 * x * eps^1/10
 | |
|       // using the former seems to work OK in practice with broadly similar 
 | |
|       // error rates either side of the divide for v < 10000.
 | |
|       // At double precision eps^1/8 ~= 0.01.
 | |
|       //
 | |
|       BOOST_ASSERT(v >= 0);
 | |
|       return (v ? v : 1) < x * 0.004f;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline bool asymptotic_bessel_large_x_limit(const T& v, const T& x)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    //
 | |
|    // Determines if x is large enough compared to v to take the asymptotic
 | |
|    // forms above.  From A&S 9.2.28 we require: 
 | |
|    //    v < x * eps^1/8
 | |
|    // and from A&S 9.2.29 we require:
 | |
|    //    v^12/10 < 1.5 * x * eps^1/10
 | |
|    // using the former seems to work OK in practice with broadly similar 
 | |
|    // error rates either side of the divide for v < 10000.
 | |
|    // At double precision eps^1/8 ~= 0.01.
 | |
|    //
 | |
|    return (std::max)(T(fabs(v)), T(1)) < x * sqrt(tools::forth_root_epsilon<T>());
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| void temme_asyptotic_y_small_x(T v, T x, T* Y, T* Y1, const Policy& pol)
 | |
| {
 | |
|    T c = 1;
 | |
|    T p = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, -v) / boost::math::tgamma(1 - v, pol);
 | |
|    T q = (v / boost::math::sin_pi(v, pol)) * pow(x / 2, v) / boost::math::tgamma(1 + v, pol);
 | |
|    T f = (p - q) / v;
 | |
|    T g_prefix = boost::math::sin_pi(v / 2, pol);
 | |
|    g_prefix *= g_prefix * 2 / v;
 | |
|    T g = f + g_prefix * q;
 | |
|    T h = p;
 | |
|    T c_mult = -x * x / 4;
 | |
| 
 | |
|    T y(c * g), y1(c * h);
 | |
| 
 | |
|    for(int k = 1; k < policies::get_max_series_iterations<Policy>(); ++k)
 | |
|    {
 | |
|       f = (k * f + p + q) / (k*k - v*v);
 | |
|       p /= k - v;
 | |
|       q /= k + v;
 | |
|       c *= c_mult / k;
 | |
|       T c1 = pow(-x * x / 4, k) / factorial<T>(k, pol);
 | |
|       g = f + g_prefix * q;
 | |
|       h = -k * g + p;
 | |
|       y += c * g;
 | |
|       y1 += c * h;
 | |
|       if(c * g / tools::epsilon<T>() < y)
 | |
|          break;
 | |
|    }
 | |
| 
 | |
|    *Y = -y;
 | |
|    *Y1 = (-2 / x) * y1;
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| T asymptotic_bessel_i_large_x(T v, T x, const Policy& pol)
 | |
| {
 | |
|    BOOST_MATH_STD_USING  // ADL of std names
 | |
|    T s = 1;
 | |
|    T mu = 4 * v * v;
 | |
|    T ex = 8 * x;
 | |
|    T num = mu - 1;
 | |
|    T denom = ex;
 | |
| 
 | |
|    s -= num / denom;
 | |
| 
 | |
|    num *= mu - 9;
 | |
|    denom *= ex * 2;
 | |
|    s += num / denom;
 | |
| 
 | |
|    num *= mu - 25;
 | |
|    denom *= ex * 3;
 | |
|    s -= num / denom;
 | |
| 
 | |
|    // Try and avoid overflow to the last minute:
 | |
|    T e = exp(x/2);
 | |
| 
 | |
|    s = e * (e * s / sqrt(2 * x * constants::pi<T>()));
 | |
| 
 | |
|    return (boost::math::isfinite)(s) ? 
 | |
|       s : policies::raise_overflow_error<T>("boost::math::asymptotic_bessel_i_large_x<%1%>(%1%,%1%)", 0, pol);
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif
 | |
| 
 | 
