1061 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1061 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // Boost.Units - A C++ library for zero-overhead dimensional analysis and 
 | |
| // unit/quantity manipulation and conversion
 | |
| //
 | |
| // Copyright (C) 2003-2008 Matthias Christian Schabel
 | |
| // Copyright (C) 2008 Steven Watanabe
 | |
| //
 | |
| // Distributed under the Boost Software License, Version 1.0. (See
 | |
| // accompanying file LICENSE_1_0.txt or copy at
 | |
| // http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_UNITS_DETAIL_LINEAR_ALGEBRA_HPP
 | |
| #define BOOST_UNITS_DETAIL_LINEAR_ALGEBRA_HPP
 | |
| 
 | |
| #include <boost/units/static_rational.hpp>
 | |
| #include <boost/mpl/next.hpp>
 | |
| #include <boost/mpl/arithmetic.hpp>
 | |
| #include <boost/mpl/and.hpp>
 | |
| #include <boost/mpl/assert.hpp>
 | |
| 
 | |
| #include <boost/units/dim.hpp>
 | |
| #include <boost/units/dimensionless_type.hpp>
 | |
| #include <boost/units/static_rational.hpp>
 | |
| #include <boost/units/detail/dimension_list.hpp>
 | |
| #include <boost/units/detail/sort.hpp>
 | |
| 
 | |
| namespace boost {
 | |
| 
 | |
| namespace units {
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| // typedef list<rational> equation;
 | |
| 
 | |
| template<int N>
 | |
| struct eliminate_from_pair_of_equations_impl;
 | |
| 
 | |
| template<class E1, class E2>
 | |
| struct eliminate_from_pair_of_equations;
 | |
| 
 | |
| template<int N>
 | |
| struct elimination_impl;
 | |
| 
 | |
| template<bool is_zero, bool element_is_last>
 | |
| struct elimination_skip_leading_zeros_impl;
 | |
| 
 | |
| template<class Equation, class Vars>
 | |
| struct substitute;
 | |
| 
 | |
| template<int N>
 | |
| struct substitute_impl;
 | |
| 
 | |
| template<bool is_end>
 | |
| struct solve_impl;
 | |
| 
 | |
| template<class T>
 | |
| struct solve;
 | |
| 
 | |
| template<int N>
 | |
| struct check_extra_equations_impl;
 | |
| 
 | |
| template<int N>
 | |
| struct normalize_units_impl;
 | |
| 
 | |
| struct inconsistent {};
 | |
| 
 | |
| // generally useful utilies.
 | |
| 
 | |
| template<int N>
 | |
| struct divide_equation {
 | |
|     template<class Begin, class Divisor>
 | |
|     struct apply {
 | |
|         typedef list<typename mpl::divides<typename Begin::item, Divisor>::type, typename divide_equation<N - 1>::template apply<typename Begin::next, Divisor>::type> type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct divide_equation<0> {
 | |
|     template<class Begin, class Divisor>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // eliminate_from_pair_of_equations takes a pair of
 | |
| // equations and eliminates the first variable.
 | |
| //
 | |
| // equation eliminate_from_pair_of_equations(equation l1, equation l2) {
 | |
| //     rational x1 = l1.front();
 | |
| //     rational x2 = l2.front();
 | |
| //     return(transform(pop_front(l1), pop_front(l2), _1 * x2 - _2 * x1));
 | |
| // }
 | |
| 
 | |
| template<int N>
 | |
| struct eliminate_from_pair_of_equations_impl {
 | |
|     template<class Begin1, class Begin2, class X1, class X2>
 | |
|     struct apply {
 | |
|         typedef list<
 | |
|             typename mpl::minus<
 | |
|                 typename mpl::times<typename Begin1::item, X2>::type,
 | |
|                 typename mpl::times<typename Begin2::item, X1>::type
 | |
|             >::type,
 | |
|             typename eliminate_from_pair_of_equations_impl<N - 1>::template apply<
 | |
|                 typename Begin1::next,
 | |
|                 typename Begin2::next,
 | |
|                 X1,
 | |
|                 X2
 | |
|             >::type
 | |
|         > type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct eliminate_from_pair_of_equations_impl<0> {
 | |
|     template<class Begin1, class Begin2, class X1, class X2>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class E1, class E2>
 | |
| struct eliminate_from_pair_of_equations {
 | |
|     typedef E1 begin1;
 | |
|     typedef E2 begin2;
 | |
|     typedef typename eliminate_from_pair_of_equations_impl<(E1::size::value - 1)>::template apply<
 | |
|         typename begin1::next,
 | |
|         typename begin2::next,
 | |
|         typename begin1::item,
 | |
|         typename begin2::item
 | |
|     >::type type;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| // Stage 1.  Determine which dimensions should
 | |
| // have dummy base units.  For this purpose
 | |
| // row reduce the matrix.
 | |
| 
 | |
| template<int N>
 | |
| struct make_zero_vector {
 | |
|     typedef list<static_rational<0>, typename make_zero_vector<N - 1>::type> type;
 | |
| };
 | |
| template<>
 | |
| struct make_zero_vector<0> {
 | |
|     typedef dimensionless_type type;
 | |
| };
 | |
| 
 | |
| template<int Column, int TotalColumns>
 | |
| struct create_row_of_identity {
 | |
|     typedef list<static_rational<0>, typename create_row_of_identity<Column - 1, TotalColumns - 1>::type> type;
 | |
| };
 | |
| template<int TotalColumns>
 | |
| struct create_row_of_identity<0, TotalColumns> {
 | |
|     typedef list<static_rational<1>, typename make_zero_vector<TotalColumns - 1>::type> type;
 | |
| };
 | |
| template<int Column>
 | |
| struct create_row_of_identity<Column, 0> {
 | |
|     // error
 | |
| };
 | |
| 
 | |
| template<int RemainingRows>
 | |
| struct determine_extra_equations_impl;
 | |
| 
 | |
| template<bool first_is_zero, bool is_last>
 | |
| struct determine_extra_equations_skip_zeros_impl;
 | |
| 
 | |
| // not the last row and not zero.
 | |
| template<>
 | |
| struct determine_extra_equations_skip_zeros_impl<false, false> {
 | |
|     template<class RowsBegin, int RemainingRows, int CurrentColumn, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         // remove the equation being eliminated against from the set of equations.
 | |
|         typedef typename determine_extra_equations_impl<RemainingRows - 1>::template apply<typename RowsBegin::next, typename RowsBegin::item>::type next_equations;
 | |
|         // since this column was present, strip it out.
 | |
|         typedef Result type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // the last row but not zero.
 | |
| template<>
 | |
| struct determine_extra_equations_skip_zeros_impl<false, true> {
 | |
|     template<class RowsBegin, int RemainingRows, int CurrentColumn, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         // remove this equation.
 | |
|         typedef dimensionless_type next_equations;
 | |
|         // since this column was present, strip it out.
 | |
|         typedef Result type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| 
 | |
| // the first columns is zero but it is not the last column.
 | |
| // continue with the same loop.
 | |
| template<>
 | |
| struct determine_extra_equations_skip_zeros_impl<true, false> {
 | |
|     template<class RowsBegin, int RemainingRows, int CurrentColumn, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::next::item next_row;
 | |
|         typedef typename determine_extra_equations_skip_zeros_impl<
 | |
|             next_row::item::Numerator == 0,
 | |
|             RemainingRows == 2  // the next one will be the last.
 | |
|         >::template apply<
 | |
|             typename RowsBegin::next,
 | |
|             RemainingRows - 1,
 | |
|             CurrentColumn,
 | |
|             TotalColumns,
 | |
|             Result
 | |
|         > next;
 | |
|         typedef list<typename RowsBegin::item::next, typename next::next_equations> next_equations;
 | |
|         typedef typename next::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // all the elements in this column are zero.
 | |
| template<>
 | |
| struct determine_extra_equations_skip_zeros_impl<true, true> {
 | |
|     template<class RowsBegin, int RemainingRows, int CurrentColumn, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         typedef list<typename RowsBegin::item::next, dimensionless_type> next_equations;
 | |
|         typedef list<typename create_row_of_identity<CurrentColumn, TotalColumns>::type, Result> type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int RemainingRows>
 | |
| struct determine_extra_equations_impl {
 | |
|     template<class RowsBegin, class EliminateAgainst>
 | |
|     struct apply {
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations<typename RowsBegin::item, EliminateAgainst>::type,
 | |
|             typename determine_extra_equations_impl<RemainingRows-1>::template apply<typename RowsBegin::next, EliminateAgainst>::type
 | |
|         > type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct determine_extra_equations_impl<0> {
 | |
|     template<class RowsBegin, class EliminateAgainst>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int RemainingColumns, bool is_done>
 | |
| struct determine_extra_equations {
 | |
|     template<class RowsBegin, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::item top_row;
 | |
|         typedef typename determine_extra_equations_skip_zeros_impl<
 | |
|             top_row::item::Numerator == 0,
 | |
|             RowsBegin::size::value == 1
 | |
|         >::template apply<
 | |
|             RowsBegin,
 | |
|             RowsBegin::size::value,
 | |
|             TotalColumns - RemainingColumns,
 | |
|             TotalColumns,
 | |
|             Result
 | |
|         > column_info;
 | |
|         typedef typename determine_extra_equations<
 | |
|             RemainingColumns - 1,
 | |
|             column_info::next_equations::size::value == 0
 | |
|         >::template apply<
 | |
|             typename column_info::next_equations,
 | |
|             TotalColumns,
 | |
|             typename column_info::type
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int RemainingColumns>
 | |
| struct determine_extra_equations<RemainingColumns, true> {
 | |
|     template<class RowsBegin, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         typedef typename determine_extra_equations<RemainingColumns - 1, true>::template apply<
 | |
|             RowsBegin,
 | |
|             TotalColumns,
 | |
|             list<typename create_row_of_identity<TotalColumns - RemainingColumns, TotalColumns>::type, Result>
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct determine_extra_equations<0, true> {
 | |
|     template<class RowsBegin, int TotalColumns, class Result>
 | |
|     struct apply {
 | |
|         typedef Result type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // Stage 2
 | |
| // invert the matrix using Gauss-Jordan elimination
 | |
| 
 | |
| 
 | |
| template<bool is_zero, bool is_last>
 | |
| struct invert_strip_leading_zeroes;
 | |
| 
 | |
| template<int N>
 | |
| struct invert_handle_after_pivot_row;
 | |
| 
 | |
| // When processing column N, none of the first N rows 
 | |
| // can be the pivot column.
 | |
| template<int N>
 | |
| struct invert_handle_inital_rows {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename invert_handle_inital_rows<N - 1>::template apply<
 | |
|             typename RowsBegin::next,
 | |
|             typename IdentityBegin::next
 | |
|         > next;
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename IdentityBegin::item current_identity_row;
 | |
|         typedef typename next::pivot_row pivot_row;
 | |
|         typedef typename next::identity_pivot_row identity_pivot_row;
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_row::size::value) - 1>::template apply<
 | |
|                 typename current_row::next,
 | |
|                 pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::new_matrix
 | |
|         > new_matrix;
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_identity_row::size::value)>::template apply<
 | |
|                 current_identity_row,
 | |
|                 identity_pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::identity_result
 | |
|         > identity_result;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // This handles the switch to searching for a pivot column.
 | |
| // The pivot row will be propagated up in the typedefs
 | |
| // pivot_row and identity_pivot_row.  It is inserted here.
 | |
| template<>
 | |
| struct invert_handle_inital_rows<0> {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename invert_strip_leading_zeroes<
 | |
|             (current_row::item::Numerator == 0),
 | |
|             (RowsBegin::size::value == 1)
 | |
|         >::template apply<
 | |
|             RowsBegin,
 | |
|             IdentityBegin
 | |
|         > next;
 | |
|         // results
 | |
|         typedef list<typename next::pivot_row, typename next::new_matrix> new_matrix;
 | |
|         typedef list<typename next::identity_pivot_row, typename next::identity_result> identity_result;
 | |
|         typedef typename next::pivot_row pivot_row;
 | |
|         typedef typename next::identity_pivot_row identity_pivot_row;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // The first internal element which is not zero.
 | |
| template<>
 | |
| struct invert_strip_leading_zeroes<false, false> {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename current_row::item current_value;
 | |
|         typedef typename divide_equation<(current_row::size::value - 1)>::template apply<typename current_row::next, current_value>::type new_equation;
 | |
|         typedef typename divide_equation<(IdentityBegin::item::size::value)>::template apply<typename IdentityBegin::item, current_value>::type transformed_identity_equation;
 | |
|         typedef typename invert_handle_after_pivot_row<(RowsBegin::size::value - 1)>::template apply<
 | |
|             typename RowsBegin::next,
 | |
|             typename IdentityBegin::next,
 | |
|             new_equation,
 | |
|             transformed_identity_equation
 | |
|         > next;
 | |
| 
 | |
|         // results
 | |
|         // Note that we don't add the pivot row to the
 | |
|         // results here, because it needs to propagated up
 | |
|         // to the diagonal.
 | |
|         typedef typename next::new_matrix new_matrix;
 | |
|         typedef typename next::identity_result identity_result;
 | |
|         typedef new_equation pivot_row;
 | |
|         typedef transformed_identity_equation identity_pivot_row;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // The one and only non-zero element--at the end
 | |
| template<>
 | |
| struct invert_strip_leading_zeroes<false, true> {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename current_row::item current_value;
 | |
|         typedef typename divide_equation<(current_row::size::value - 1)>::template apply<typename current_row::next, current_value>::type new_equation;
 | |
|         typedef typename divide_equation<(IdentityBegin::item::size::value)>::template apply<typename IdentityBegin::item, current_value>::type transformed_identity_equation;
 | |
| 
 | |
|         // results
 | |
|         // Note that we don't add the pivot row to the
 | |
|         // results here, because it needs to propagated up
 | |
|         // to the diagonal.
 | |
|         typedef dimensionless_type identity_result;
 | |
|         typedef dimensionless_type new_matrix;
 | |
|         typedef new_equation pivot_row;
 | |
|         typedef transformed_identity_equation identity_pivot_row;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // One of the initial zeroes
 | |
| template<>
 | |
| struct invert_strip_leading_zeroes<true, false> {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename RowsBegin::next::item next_row;
 | |
|         typedef typename invert_strip_leading_zeroes<
 | |
|             next_row::item::Numerator == 0,
 | |
|             RowsBegin::size::value == 2
 | |
|         >::template apply<
 | |
|             typename RowsBegin::next,
 | |
|             typename IdentityBegin::next
 | |
|         > next;
 | |
|         typedef typename IdentityBegin::item current_identity_row;
 | |
|         // these are propagated up.
 | |
|         typedef typename next::pivot_row pivot_row;
 | |
|         typedef typename next::identity_pivot_row identity_pivot_row;
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_row::size::value - 1)>::template apply<
 | |
|                 typename current_row::next,
 | |
|                 pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::new_matrix
 | |
|         > new_matrix;
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_identity_row::size::value)>::template apply<
 | |
|                 current_identity_row,
 | |
|                 identity_pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::identity_result
 | |
|         > identity_result;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // the last element, and is zero.
 | |
| // Should never happen.
 | |
| template<>
 | |
| struct invert_strip_leading_zeroes<true, true> {
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct invert_handle_after_pivot_row {
 | |
|     template<class RowsBegin, class IdentityBegin, class MatrixPivot, class IdentityPivot>
 | |
|     struct apply {
 | |
|         typedef typename invert_handle_after_pivot_row<N - 1>::template apply<
 | |
|             typename RowsBegin::next,
 | |
|             typename IdentityBegin::next,
 | |
|             MatrixPivot,
 | |
|             IdentityPivot
 | |
|         > next;
 | |
|         typedef typename RowsBegin::item current_row;
 | |
|         typedef typename IdentityBegin::item current_identity_row;
 | |
|         typedef MatrixPivot pivot_row;
 | |
|         typedef IdentityPivot identity_pivot_row;
 | |
| 
 | |
|         // results
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_row::size::value - 1)>::template apply<
 | |
|                 typename current_row::next,
 | |
|                 pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::new_matrix
 | |
|         > new_matrix;
 | |
|         typedef list<
 | |
|             typename eliminate_from_pair_of_equations_impl<(current_identity_row::size::value)>::template apply<
 | |
|                 current_identity_row,
 | |
|                 identity_pivot_row,
 | |
|                 typename current_row::item,
 | |
|                 static_rational<1>
 | |
|             >::type,
 | |
|             typename next::identity_result
 | |
|         > identity_result;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct invert_handle_after_pivot_row<0> {
 | |
|     template<class RowsBegin, class IdentityBegin, class MatrixPivot, class IdentityPivot>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type new_matrix;
 | |
|         typedef dimensionless_type identity_result;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct invert_impl {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef typename invert_handle_inital_rows<RowsBegin::size::value - N>::template apply<RowsBegin, IdentityBegin> process_column;
 | |
|         typedef typename invert_impl<N - 1>::template apply<
 | |
|             typename process_column::new_matrix,
 | |
|             typename process_column::identity_result
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct invert_impl<0> {
 | |
|     template<class RowsBegin, class IdentityBegin>
 | |
|     struct apply {
 | |
|         typedef IdentityBegin type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct make_identity {
 | |
|     template<int Size>
 | |
|     struct apply {
 | |
|         typedef list<typename create_row_of_identity<Size - N, Size>::type, typename make_identity<N - 1>::template apply<Size>::type> type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct make_identity<0> {
 | |
|     template<int Size>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class Matrix>
 | |
| struct make_square_and_invert {
 | |
|     typedef typename Matrix::item top_row;
 | |
|     typedef typename determine_extra_equations<(top_row::size::value), false>::template apply<
 | |
|         Matrix,                 // RowsBegin
 | |
|         top_row::size::value,   // TotalColumns
 | |
|         Matrix                  // Result
 | |
|     >::type invertible;
 | |
|     typedef typename invert_impl<invertible::size::value>::template apply<
 | |
|         invertible,
 | |
|         typename make_identity<invertible::size::value>::template apply<invertible::size::value>::type
 | |
|     >::type type;
 | |
| };
 | |
| 
 | |
| 
 | |
| // find_base_dimensions takes a list of
 | |
| // base_units and returns a sorted list
 | |
| // of all the base_dimensions they use.
 | |
| //
 | |
| // list<base_dimension> find_base_dimensions(list<base_unit> l) {
 | |
| //     set<base_dimension> dimensions;
 | |
| //     for_each(base_unit unit : l) {
 | |
| //         for_each(dim d : unit.dimension_type) {
 | |
| //             dimensions = insert(dimensions, d.tag_type);
 | |
| //         }
 | |
| //     }
 | |
| //     return(sort(dimensions, _1 > _2, front_inserter(list<base_dimension>())));
 | |
| // }
 | |
| 
 | |
| typedef char set_no;
 | |
| struct set_yes { set_no dummy[2]; };
 | |
| 
 | |
| template<class T>
 | |
| struct wrap {};
 | |
| 
 | |
| struct set_end {
 | |
|     static set_no lookup(...);
 | |
|     typedef mpl::long_<0> size;
 | |
| };
 | |
| 
 | |
| template<class T, class Next>
 | |
| struct set : Next {
 | |
|     using Next::lookup;
 | |
|     static set_yes lookup(wrap<T>*);
 | |
|     typedef T item;
 | |
|     typedef Next next;
 | |
|     typedef typename mpl::next<typename Next::size>::type size;
 | |
| };
 | |
| 
 | |
| template<bool has_key>
 | |
| struct set_insert;
 | |
| 
 | |
| template<>
 | |
| struct set_insert<true> {
 | |
|     template<class Set, class T>
 | |
|     struct apply {
 | |
|         typedef Set type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct set_insert<false> {
 | |
|     template<class Set, class T>
 | |
|     struct apply {
 | |
|         typedef set<T, Set> type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class Set, class T>
 | |
| struct has_key {
 | |
|     static const long size = sizeof(Set::lookup((wrap<T>*)0));
 | |
|     static const bool value = (size == sizeof(set_yes));
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct find_base_dimensions_impl_impl {
 | |
|     template<class Begin, class S>
 | |
|     struct apply {
 | |
|         typedef typename find_base_dimensions_impl_impl<N-1>::template apply<
 | |
|             typename Begin::next,
 | |
|             S
 | |
|         >::type next;
 | |
| 
 | |
|         typedef typename set_insert<
 | |
|             (has_key<next, typename Begin::item::tag_type>::value)
 | |
|         >::template apply<
 | |
|             next,
 | |
|             typename Begin::item::tag_type
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct find_base_dimensions_impl_impl<0> {
 | |
|     template<class Begin, class S>
 | |
|     struct apply {
 | |
|         typedef S type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct find_base_dimensions_impl {
 | |
|     template<class Begin>
 | |
|     struct apply {
 | |
|         typedef typename find_base_dimensions_impl_impl<(Begin::item::dimension_type::size::value)>::template apply<
 | |
|             typename Begin::item::dimension_type,
 | |
|             typename find_base_dimensions_impl<N-1>::template apply<typename Begin::next>::type
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct find_base_dimensions_impl<0> {
 | |
|     template<class Begin>
 | |
|     struct apply {
 | |
|         typedef set_end type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class T>
 | |
| struct find_base_dimensions {
 | |
|     typedef typename insertion_sort<
 | |
|         typename find_base_dimensions_impl<
 | |
|             (T::size::value)
 | |
|         >::template apply<T>::type
 | |
|     >::type type;
 | |
| };
 | |
| 
 | |
| // calculate_base_dimension_coefficients finds
 | |
| // the coefficients corresponding to the first
 | |
| // base_dimension in each of the dimension_lists.
 | |
| // It returns two values.  The first result
 | |
| // is a list of the coefficients.  The second
 | |
| // is a list with all the incremented iterators.
 | |
| // When we encounter a base_dimension that is
 | |
| // missing from a dimension_list, we do not
 | |
| // increment the iterator and we set the
 | |
| // coefficient to zero.
 | |
| 
 | |
| template<bool has_dimension>
 | |
| struct calculate_base_dimension_coefficients_func;
 | |
| 
 | |
| template<>
 | |
| struct calculate_base_dimension_coefficients_func<true> {
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef typename T::item::value_type type;
 | |
|         typedef typename T::next next;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct calculate_base_dimension_coefficients_func<false> {
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef static_rational<0> type;
 | |
|         typedef T next;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // begins_with_dimension returns true iff its first
 | |
| // parameter is a valid iterator which yields its
 | |
| // second parameter when dereferenced.
 | |
| 
 | |
| template<class Iterator>
 | |
| struct begins_with_dimension {
 | |
|     template<class Dim>
 | |
|     struct apply : 
 | |
|         boost::is_same<
 | |
|             Dim,
 | |
|             typename Iterator::item::tag_type
 | |
|         > {};
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct begins_with_dimension<dimensionless_type> {
 | |
|     template<class Dim>
 | |
|     struct apply : mpl::false_ {};
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct calculate_base_dimension_coefficients_impl {
 | |
|     template<class BaseUnitDimensions,class Dim,class T>
 | |
|     struct apply {
 | |
|         typedef typename calculate_base_dimension_coefficients_func<
 | |
|             begins_with_dimension<typename BaseUnitDimensions::item>::template apply<
 | |
|                 Dim
 | |
|             >::value
 | |
|         >::template apply<
 | |
|             typename BaseUnitDimensions::item
 | |
|         > result;
 | |
|         typedef typename calculate_base_dimension_coefficients_impl<N-1>::template apply<
 | |
|             typename BaseUnitDimensions::next,
 | |
|             Dim,
 | |
|             list<typename result::type, T>
 | |
|         > next_;
 | |
|         typedef typename next_::type type;
 | |
|         typedef list<typename result::next, typename next_::next> next;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct calculate_base_dimension_coefficients_impl<0> {
 | |
|     template<class Begin, class BaseUnitDimensions, class T>
 | |
|     struct apply {
 | |
|         typedef T type;
 | |
|         typedef dimensionless_type next;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // add_zeroes pushs N zeroes onto the
 | |
| // front of a list.
 | |
| //
 | |
| // list<rational> add_zeroes(list<rational> l, int N) {
 | |
| //     if(N == 0) {
 | |
| //         return(l);
 | |
| //     } else {
 | |
| //         return(push_front(add_zeroes(l, N-1), 0));
 | |
| //     }
 | |
| // }
 | |
| 
 | |
| template<int N>
 | |
| struct add_zeroes_impl {
 | |
|     // If you get an error here and your base units are
 | |
|     // in fact linearly independent, please report it.
 | |
|     BOOST_MPL_ASSERT_MSG((N > 0), base_units_are_probably_not_linearly_independent, (void));
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef list<
 | |
|             static_rational<0>,
 | |
|             typename add_zeroes_impl<N-1>::template apply<T>::type
 | |
|         > type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct add_zeroes_impl<0> {
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef T type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // expand_dimensions finds the exponents of
 | |
| // a set of dimensions in a dimension_list.
 | |
| // the second parameter is assumed to be
 | |
| // a superset of the base_dimensions of
 | |
| // the first parameter.
 | |
| //
 | |
| // list<rational> expand_dimensions(dimension_list, list<base_dimension>);
 | |
| 
 | |
| template<int N>
 | |
| struct expand_dimensions {
 | |
|     template<class Begin, class DimensionIterator>
 | |
|     struct apply {
 | |
|         typedef typename calculate_base_dimension_coefficients_func<
 | |
|             begins_with_dimension<DimensionIterator>::template apply<typename Begin::item>::value
 | |
|         >::template apply<DimensionIterator> result;
 | |
|         typedef list<
 | |
|             typename result::type,
 | |
|             typename expand_dimensions<N-1>::template apply<typename Begin::next, typename result::next>::type
 | |
|         > type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct expand_dimensions<0> {
 | |
|     template<class Begin, class DimensionIterator>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct create_unit_matrix {
 | |
|     template<class Begin, class Dimensions>
 | |
|     struct apply {
 | |
|         typedef typename create_unit_matrix<N - 1>::template apply<typename Begin::next, Dimensions>::type next;
 | |
|         typedef list<typename expand_dimensions<Dimensions::size::value>::template apply<Dimensions, typename Begin::item::dimension_type>::type, next> type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct create_unit_matrix<0> {
 | |
|     template<class Begin, class Dimensions>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class T>
 | |
| struct normalize_units {
 | |
|     typedef typename find_base_dimensions<T>::type dimensions;
 | |
|     typedef typename create_unit_matrix<(T::size::value)>::template apply<
 | |
|         T,
 | |
|         dimensions
 | |
|     >::type matrix;
 | |
|     typedef typename make_square_and_invert<matrix>::type type;
 | |
|     static const long extra = (type::size::value) - (T::size::value);
 | |
| };
 | |
| 
 | |
| // multiply_add_units computes M x V
 | |
| // where M is a matrix and V is a horizontal
 | |
| // vector
 | |
| //
 | |
| // list<rational> multiply_add_units(list<list<rational> >, list<rational>);
 | |
| 
 | |
| template<int N>
 | |
| struct multiply_add_units_impl {
 | |
|     template<class Begin1, class Begin2 ,class X>
 | |
|     struct apply {
 | |
|         typedef list<
 | |
|             typename mpl::plus<
 | |
|                 typename mpl::times<
 | |
|                     typename Begin2::item,
 | |
|                     X
 | |
|                 >::type,
 | |
|                 typename Begin1::item
 | |
|             >::type,
 | |
|             typename multiply_add_units_impl<N-1>::template apply<
 | |
|                 typename Begin1::next,
 | |
|                 typename Begin2::next,
 | |
|                 X
 | |
|             >::type
 | |
|         > type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct multiply_add_units_impl<0> {
 | |
|     template<class Begin1, class Begin2 ,class X>
 | |
|     struct apply {
 | |
|         typedef dimensionless_type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct multiply_add_units {
 | |
|     template<class Begin1, class Begin2>
 | |
|     struct apply {
 | |
|         typedef typename multiply_add_units_impl<
 | |
|             (Begin2::item::size::value)
 | |
|         >::template apply<
 | |
|             typename multiply_add_units<N-1>::template apply<
 | |
|                 typename Begin1::next,
 | |
|                 typename Begin2::next
 | |
|             >::type,
 | |
|             typename Begin2::item,
 | |
|             typename Begin1::item
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct multiply_add_units<1> {
 | |
|     template<class Begin1, class Begin2>
 | |
|     struct apply {
 | |
|         typedef typename add_zeroes_impl<
 | |
|             (Begin2::item::size::value)
 | |
|         >::template apply<dimensionless_type>::type type1;
 | |
|         typedef typename multiply_add_units_impl<
 | |
|             (Begin2::item::size::value)
 | |
|         >::template apply<
 | |
|             type1,
 | |
|             typename Begin2::item,
 | |
|             typename Begin1::item
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| 
 | |
| // strip_zeroes erases the first N elements of a list if
 | |
| // they are all zero, otherwise returns inconsistent
 | |
| //
 | |
| // list strip_zeroes(list l, int N) {
 | |
| //     if(N == 0) {
 | |
| //         return(l);
 | |
| //     } else if(l.front == 0) {
 | |
| //         return(strip_zeroes(pop_front(l), N-1));
 | |
| //     } else {
 | |
| //         return(inconsistent);
 | |
| //     }
 | |
| // }
 | |
| 
 | |
| template<int N>
 | |
| struct strip_zeroes_impl;
 | |
| 
 | |
| template<class T>
 | |
| struct strip_zeroes_func {
 | |
|     template<class L, int N>
 | |
|     struct apply {
 | |
|         typedef inconsistent type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct strip_zeroes_func<static_rational<0> > {
 | |
|     template<class L, int N>
 | |
|     struct apply {
 | |
|         typedef typename strip_zeroes_impl<N-1>::template apply<typename L::next>::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct strip_zeroes_impl {
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef typename strip_zeroes_func<typename T::item>::template apply<T, N>::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct strip_zeroes_impl<0> {
 | |
|     template<class T>
 | |
|     struct apply {
 | |
|         typedef T type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| // Given a list of base_units, computes the
 | |
| // exponents of each base unit for a given
 | |
| // dimension.
 | |
| //
 | |
| // list<rational> calculate_base_unit_exponents(list<base_unit> units, dimension_list dimensions);
 | |
| 
 | |
| template<class T>
 | |
| struct is_base_dimension_unit {
 | |
|     typedef mpl::false_ type;
 | |
|     typedef void base_dimension_type;
 | |
| };
 | |
| template<class T>
 | |
| struct is_base_dimension_unit<list<dim<T, static_rational<1> >, dimensionless_type> > {
 | |
|     typedef mpl::true_ type;
 | |
|     typedef T base_dimension_type;
 | |
| };
 | |
| 
 | |
| template<int N>
 | |
| struct is_simple_system_impl {
 | |
|     template<class Begin, class Prev>
 | |
|     struct apply {
 | |
|         typedef is_base_dimension_unit<typename Begin::item::dimension_type> test;
 | |
|         typedef mpl::and_<
 | |
|             typename test::type,
 | |
|             mpl::less<Prev, typename test::base_dimension_type>,
 | |
|             typename is_simple_system_impl<N-1>::template apply<
 | |
|                 typename Begin::next,
 | |
|                 typename test::base_dimension_type
 | |
|             >
 | |
|         > type;
 | |
|         static const bool value = (type::value);
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct is_simple_system_impl<0> {
 | |
|     template<class Begin, class Prev>
 | |
|     struct apply : mpl::true_ {
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class T>
 | |
| struct is_simple_system {
 | |
|     typedef T Begin;
 | |
|     typedef is_base_dimension_unit<typename Begin::item::dimension_type> test;
 | |
|     typedef typename mpl::and_<
 | |
|         typename test::type,
 | |
|         typename is_simple_system_impl<
 | |
|             T::size::value - 1
 | |
|         >::template apply<
 | |
|             typename Begin::next::type,
 | |
|             typename test::base_dimension_type
 | |
|         >
 | |
|     >::type type;
 | |
|     static const bool value = type::value;
 | |
| };
 | |
| 
 | |
| template<bool>
 | |
| struct calculate_base_unit_exponents_impl;
 | |
| 
 | |
| template<>
 | |
| struct calculate_base_unit_exponents_impl<true> {
 | |
|     template<class T, class Dimensions>
 | |
|     struct apply {
 | |
|         typedef typename expand_dimensions<(T::size::value)>::template apply<
 | |
|             typename find_base_dimensions<T>::type,
 | |
|             Dimensions
 | |
|         >::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct calculate_base_unit_exponents_impl<false> {
 | |
|     template<class T, class Dimensions>
 | |
|     struct apply {
 | |
|         // find the units that correspond to each base dimension
 | |
|         typedef normalize_units<T> base_solutions;
 | |
|         // pad the dimension with zeroes so it can just be a
 | |
|         // list of numbers, making the multiplication easy
 | |
|         // e.g. if the arguments are list<pound, foot> and
 | |
|         // list<mass,time^-2> then this step will
 | |
|         // yield list<0,1,-2>
 | |
|         typedef typename expand_dimensions<(base_solutions::dimensions::size::value)>::template apply<
 | |
|             typename base_solutions::dimensions,
 | |
|             Dimensions
 | |
|         >::type dimensions;
 | |
|         // take the unit corresponding to each base unit
 | |
|         // multiply each of its exponents by the exponent
 | |
|         // of the base_dimension in the result and sum.
 | |
|         typedef typename multiply_add_units<dimensions::size::value>::template apply<
 | |
|             dimensions,
 | |
|             typename base_solutions::type
 | |
|         >::type units;
 | |
|         // Now, verify that the dummy units really
 | |
|         // cancel out and remove them.
 | |
|         typedef typename strip_zeroes_impl<base_solutions::extra>::template apply<units>::type type;
 | |
|     };
 | |
| };
 | |
| 
 | |
| template<class T, class Dimensions>
 | |
| struct calculate_base_unit_exponents {
 | |
|     typedef typename calculate_base_unit_exponents_impl<is_simple_system<T>::value>::template apply<T, Dimensions>::type type;
 | |
| };
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| } // namespace units
 | |
| 
 | |
| } // namespace boost
 | |
| 
 | |
| #endif
 | 
