js8call/.svn/pristine/99/996dfac0b6d61d73ceb8f93dde4bc9da6c5cd486.svn-base
2018-02-08 21:28:33 -05:00

303 lines
8.9 KiB
Plaintext

// Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// History:
// XZ wrote the original of this file as part of the Google
// Summer of Code 2006. JM modified it to fit into the
// Boost.Math conceptual framework better, and to correctly
// handle the p < 0 case.
// Updated 2015 to use Carlson's latest methods.
//
#ifndef BOOST_MATH_ELLINT_RJ_HPP
#define BOOST_MATH_ELLINT_RJ_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/tools/config.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/ellint_rc.hpp>
#include <boost/math/special_functions/ellint_rf.hpp>
#include <boost/math/special_functions/ellint_rd.hpp>
// Carlson's elliptic integral of the third kind
// R_J(x, y, z, p) = 1.5 * \int_{0}^{\infty} (t+p)^{-1} [(t+x)(t+y)(t+z)]^{-1/2} dt
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
namespace boost { namespace math { namespace detail{
template <typename T, typename Policy>
T ellint_rc1p_imp(T y, const Policy& pol)
{
using namespace boost::math;
// Calculate RC(1, 1 + x)
BOOST_MATH_STD_USING
static const char* function = "boost::math::ellint_rc<%1%>(%1%,%1%)";
if(y == -1)
{
return policies::raise_domain_error<T>(function,
"Argument y must not be zero but got %1%", y, pol);
}
// for 1 + y < 0, the integral is singular, return Cauchy principal value
T result;
if(y < -1)
{
result = sqrt(1 / -y) * detail::ellint_rc_imp(T(-y), T(-1 - y), pol);
}
else if(y == 0)
{
result = 1;
}
else if(y > 0)
{
result = atan(sqrt(y)) / sqrt(y);
}
else
{
if(y > -0.5)
{
T arg = sqrt(-y);
result = (boost::math::log1p(arg) - boost::math::log1p(-arg)) / (2 * sqrt(-y));
}
else
{
result = log((1 + sqrt(-y)) / sqrt(1 + y)) / sqrt(-y);
}
}
return result;
}
template <typename T, typename Policy>
T ellint_rj_imp(T x, T y, T z, T p, const Policy& pol)
{
BOOST_MATH_STD_USING
static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)";
if(x < 0)
{
return policies::raise_domain_error<T>(function,
"Argument x must be non-negative, but got x = %1%", x, pol);
}
if(y < 0)
{
return policies::raise_domain_error<T>(function,
"Argument y must be non-negative, but got y = %1%", y, pol);
}
if(z < 0)
{
return policies::raise_domain_error<T>(function,
"Argument z must be non-negative, but got z = %1%", z, pol);
}
if(p == 0)
{
return policies::raise_domain_error<T>(function,
"Argument p must not be zero, but got p = %1%", p, pol);
}
if(x + y == 0 || y + z == 0 || z + x == 0)
{
return policies::raise_domain_error<T>(function,
"At most one argument can be zero, "
"only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol);
}
// for p < 0, the integral is singular, return Cauchy principal value
if(p < 0)
{
//
// We must ensure that x < y < z.
// Since the integral is symmetrical in x, y and z
// we can just permute the values:
//
if(x > y)
std::swap(x, y);
if(y > z)
std::swap(y, z);
if(x > y)
std::swap(x, y);
BOOST_ASSERT(x <= y);
BOOST_ASSERT(y <= z);
T q = -p;
p = (z * (x + y + q) - x * y) / (z + q);
BOOST_ASSERT(p >= 0);
T value = (p - z) * ellint_rj_imp(x, y, z, p, pol);
value -= 3 * ellint_rf_imp(x, y, z, pol);
value += 3 * sqrt((x * y * z) / (x * y + p * q)) * ellint_rc_imp(T(x * y + p * q), T(p * q), pol);
value /= (z + q);
return value;
}
//
// Special cases from http://dlmf.nist.gov/19.20#iii
//
if(x == y)
{
if(x == z)
{
if(x == p)
{
// All values equal:
return 1 / (x * sqrt(x));
}
else
{
// x = y = z:
return 3 * (ellint_rc_imp(x, p, pol) - 1 / sqrt(x)) / (x - p);
}
}
else
{
// x = y only, permute so y = z:
using std::swap;
swap(x, z);
if(y == p)
{
return ellint_rd_imp(x, y, y, pol);
}
else if((std::max)(y, p) / (std::min)(y, p) > 1.2)
{
return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y);
}
// Otherwise fall through to normal method, special case above will suffer too much cancellation...
}
}
if(y == z)
{
if(y == p)
{
// y = z = p:
return ellint_rd_imp(x, y, y, pol);
}
else if((std::max)(y, p) / (std::min)(y, p) > 1.2)
{
// y = z:
return 3 * (ellint_rc_imp(x, y, pol) - ellint_rc_imp(x, p, pol)) / (p - y);
}
// Otherwise fall through to normal method, special case above will suffer too much cancellation...
}
if(z == p)
{
return ellint_rd_imp(x, y, z, pol);
}
T xn = x;
T yn = y;
T zn = z;
T pn = p;
T An = (x + y + z + 2 * p) / 5;
T A0 = An;
T delta = (p - x) * (p - y) * (p - z);
T Q = pow(tools::epsilon<T>() / 5, -T(1) / 8) * (std::max)((std::max)(fabs(An - x), fabs(An - y)), (std::max)(fabs(An - z), fabs(An - p)));
unsigned n;
T lambda;
T Dn;
T En;
T rx, ry, rz, rp;
T fmn = 1; // 4^-n
T RC_sum = 0;
for(n = 0; n < policies::get_max_series_iterations<Policy>(); ++n)
{
rx = sqrt(xn);
ry = sqrt(yn);
rz = sqrt(zn);
rp = sqrt(pn);
Dn = (rp + rx) * (rp + ry) * (rp + rz);
En = delta / Dn;
En /= Dn;
if((En < -0.5) && (En > -1.5))
{
//
// Occationally En ~ -1, we then have no means of calculating
// RC(1, 1+En) without terrible cancellation error, so we
// need to get to 1+En directly. By substitution we have
//
// 1+E_0 = 1 + (p-x)*(p-y)*(p-z)/((sqrt(p) + sqrt(x))*(sqrt(p)+sqrt(y))*(sqrt(p)+sqrt(z)))^2
// = 2*sqrt(p)*(p+sqrt(x) * (sqrt(y)+sqrt(z)) + sqrt(y)*sqrt(z)) / ((sqrt(p) + sqrt(x))*(sqrt(p) + sqrt(y)*(sqrt(p)+sqrt(z))))
//
// And since this is just an application of the duplication formula for RJ, the same
// expression works for 1+En if we use x,y,z,p_n etc.
// This branch is taken only once or twice at the start of iteration,
// after than En reverts to it's usual very small values.
//
T b = 2 * rp * (pn + rx * (ry + rz) + ry * rz) / Dn;
RC_sum += fmn / Dn * detail::ellint_rc_imp(T(1), b, pol);
}
else
{
RC_sum += fmn / Dn * ellint_rc1p_imp(En, pol);
}
lambda = rx * ry + rx * rz + ry * rz;
// From here on we move to n+1:
An = (An + lambda) / 4;
fmn /= 4;
if(fmn * Q < An)
break;
xn = (xn + lambda) / 4;
yn = (yn + lambda) / 4;
zn = (zn + lambda) / 4;
pn = (pn + lambda) / 4;
delta /= 64;
}
T X = fmn * (A0 - x) / An;
T Y = fmn * (A0 - y) / An;
T Z = fmn * (A0 - z) / An;
T P = (-X - Y - Z) / 2;
T E2 = X * Y + X * Z + Y * Z - 3 * P * P;
T E3 = X * Y * Z + 2 * E2 * P + 4 * P * P * P;
T E4 = (2 * X * Y * Z + E2 * P + 3 * P * P * P) * P;
T E5 = X * Y * Z * P * P;
T result = fmn * pow(An, T(-3) / 2) *
(1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
+ 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
result += 6 * RC_sum;
return result;
}
} // namespace detail
template <class T1, class T2, class T3, class T4, class Policy>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ellint_rj(T1 x, T2 y, T3 z, T4 p, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2, T3, T4>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(
detail::ellint_rj_imp(
static_cast<value_type>(x),
static_cast<value_type>(y),
static_cast<value_type>(z),
static_cast<value_type>(p),
pol), "boost::math::ellint_rj<%1%>(%1%,%1%,%1%,%1%)");
}
template <class T1, class T2, class T3, class T4>
inline typename tools::promote_args<T1, T2, T3, T4>::type
ellint_rj(T1 x, T2 y, T3 z, T4 p)
{
return ellint_rj(x, y, z, p, policies::policy<>());
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_RJ_HPP