js8call/.svn/pristine/88/88f1055f35ddf4dab247dbb39a63a0bc9aa3e40b.svn-base
2018-02-08 21:28:33 -05:00

88 lines
3.4 KiB
Plaintext

// Copyright (c) 2013 Anton Bikineev
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This is a partial header, do not include on it's own!!!
//
// Linear combination for bessel derivatives are defined here
#ifndef BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP
#define BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP
#ifdef _MSC_VER
#pragma once
#endif
namespace boost{ namespace math{ namespace detail{
template <class T, class Tag, class Policy>
inline T bessel_j_derivative_linear(T v, T x, Tag tag, Policy pol)
{
return (boost::math::detail::cyl_bessel_j_imp<T>(v-1, x, tag, pol) - boost::math::detail::cyl_bessel_j_imp<T>(v+1, x, tag, pol)) / 2;
}
template <class T, class Policy>
inline T bessel_j_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol)
{
return (boost::math::detail::cyl_bessel_j_imp<T>(itrunc(v-1), x, tag, pol) - boost::math::detail::cyl_bessel_j_imp<T>(itrunc(v+1), x, tag, pol)) / 2;
}
template <class T, class Policy>
inline T sph_bessel_j_derivative_linear(unsigned v, T x, Policy pol)
{
return (v / x) * boost::math::detail::sph_bessel_j_imp<T>(v, x, pol) - boost::math::detail::sph_bessel_j_imp<T>(v+1, x, pol);
}
template <class T, class Policy>
inline T bessel_i_derivative_linear(T v, T x, Policy pol)
{
T result = boost::math::detail::cyl_bessel_i_imp<T>(v - 1, x, pol);
if(result >= tools::max_value<T>())
return result; // result is infinite
T result2 = boost::math::detail::cyl_bessel_i_imp<T>(v + 1, x, pol);
if(result2 >= tools::max_value<T>() - result)
return result2; // result is infinite
return (result + result2) / 2;
}
template <class T, class Tag, class Policy>
inline T bessel_k_derivative_linear(T v, T x, Tag tag, Policy pol)
{
T result = boost::math::detail::cyl_bessel_k_imp<T>(v - 1, x, tag, pol);
if(result >= tools::max_value<T>())
return -result; // result is infinite
T result2 = boost::math::detail::cyl_bessel_k_imp<T>(v + 1, x, tag, pol);
if(result2 >= tools::max_value<T>() - result)
return -result2; // result is infinite
return (result + result2) / -2;
}
template <class T, class Policy>
inline T bessel_k_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol)
{
return (boost::math::detail::cyl_bessel_k_imp<T>(itrunc(v-1), x, tag, pol) + boost::math::detail::cyl_bessel_k_imp<T>(itrunc(v+1), x, tag, pol)) / -2;
}
template <class T, class Tag, class Policy>
inline T bessel_y_derivative_linear(T v, T x, Tag tag, Policy pol)
{
return (boost::math::detail::cyl_neumann_imp<T>(v-1, x, tag, pol) - boost::math::detail::cyl_neumann_imp<T>(v+1, x, tag, pol)) / 2;
}
template <class T, class Policy>
inline T bessel_y_derivative_linear(T v, T x, const bessel_int_tag& tag, Policy pol)
{
return (boost::math::detail::cyl_neumann_imp<T>(itrunc(v-1), x, tag, pol) - boost::math::detail::cyl_neumann_imp<T>(itrunc(v+1), x, tag, pol)) / 2;
}
template <class T, class Policy>
inline T sph_neumann_derivative_linear(unsigned v, T x, Policy pol)
{
return (v / x) * boost::math::detail::sph_neumann_imp<T>(v, x, pol) - boost::math::detail::sph_neumann_imp<T>(v+1, x, pol);
}
}}} // namespaces
#endif // BOOST_MATH_SF_DETAIL_BESSEL_DERIVATIVES_LINEAR_HPP