js8call/.svn/pristine/91/91a37f3a5939c86fb96049c7192d4c9416fe387f.svn-base
2018-02-08 21:28:33 -05:00

1142 lines
32 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_DETAIL_META_KERNEL_HPP
#define BOOST_COMPUTE_DETAIL_META_KERNEL_HPP
#include <set>
#include <string>
#include <vector>
#include <iomanip>
#include <sstream>
#include <utility>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/static_assert.hpp>
#include <boost/algorithm/string/find.hpp>
#include <boost/preprocessor/repetition.hpp>
#include <boost/compute/kernel.hpp>
#include <boost/compute/closure.hpp>
#include <boost/compute/function.hpp>
#include <boost/compute/functional.hpp>
#include <boost/compute/type_traits.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/image/image2d.hpp>
#include <boost/compute/image/image_sampler.hpp>
#include <boost/compute/memory_object.hpp>
#include <boost/compute/memory/svm_ptr.hpp>
#include <boost/compute/detail/device_ptr.hpp>
#include <boost/compute/detail/sha1.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class T>
class meta_kernel_variable
{
public:
typedef T result_type;
meta_kernel_variable(const std::string &name)
: m_name(name)
{
}
meta_kernel_variable(const meta_kernel_variable &other)
: m_name(other.m_name)
{
}
meta_kernel_variable& operator=(const meta_kernel_variable &other)
{
if(this != &other){
m_name = other.m_name;
}
return *this;
}
~meta_kernel_variable()
{
}
std::string name() const
{
return m_name;
}
private:
std::string m_name;
};
template<class T>
class meta_kernel_literal
{
public:
typedef T result_type;
meta_kernel_literal(const T &value)
: m_value(value)
{
}
meta_kernel_literal(const meta_kernel_literal &other)
: m_value(other.m_value)
{
}
meta_kernel_literal& operator=(const meta_kernel_literal &other)
{
if(this != &other){
m_value = other.m_value;
}
return *this;
}
~meta_kernel_literal()
{
}
const T& value() const
{
return m_value;
}
private:
T m_value;
};
struct meta_kernel_stored_arg
{
meta_kernel_stored_arg()
: m_size(0),
m_value(0)
{
}
meta_kernel_stored_arg(const meta_kernel_stored_arg &other)
: m_size(0),
m_value(0)
{
set_value(other.m_size, other.m_value);
}
meta_kernel_stored_arg& operator=(const meta_kernel_stored_arg &other)
{
if(this != &other){
set_value(other.m_size, other.m_value);
}
return *this;
}
template<class T>
meta_kernel_stored_arg(const T &value)
: m_size(0),
m_value(0)
{
set_value(value);
}
~meta_kernel_stored_arg()
{
if(m_value){
std::free(m_value);
}
}
void set_value(size_t size, const void *value)
{
if(m_value){
std::free(m_value);
}
m_size = size;
if(value){
m_value = std::malloc(size);
std::memcpy(m_value, value, size);
}
else {
m_value = 0;
}
}
template<class T>
void set_value(const T &value)
{
set_value(sizeof(T), boost::addressof(value));
}
size_t m_size;
void *m_value;
};
struct meta_kernel_buffer_info
{
meta_kernel_buffer_info(const buffer &buffer,
const std::string &id,
memory_object::address_space addr_space,
size_t i)
: m_mem(buffer.get()),
identifier(id),
address_space(addr_space),
index(i)
{
}
cl_mem m_mem;
std::string identifier;
memory_object::address_space address_space;
size_t index;
};
struct meta_kernel_svm_info
{
template <class T>
meta_kernel_svm_info(const svm_ptr<T> ptr,
const std::string &id,
memory_object::address_space addr_space,
size_t i)
: ptr(ptr.get()),
identifier(id),
address_space(addr_space),
index(i)
{
}
void* ptr;
std::string identifier;
memory_object::address_space address_space;
size_t index;
};
class meta_kernel;
template<class Type>
struct inject_type_impl
{
void operator()(meta_kernel &)
{
// default implementation does nothing
}
};
#define BOOST_COMPUTE_META_KERNEL_DECLARE_SCALAR_TYPE_STREAM_OPERATOR(type) \
meta_kernel& operator<<(const type &x) \
{ \
m_source << x; \
return *this; \
}
#define BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(type) \
meta_kernel& operator<<(const type &x) \
{ \
m_source << "(" << type_name<type>() << ")"; \
m_source << "("; \
for(size_t i = 0; i < vector_size<type>::value; i++){ \
*this << lit(x[i]); \
\
if(i != vector_size<type>::value - 1){ \
m_source << ","; \
} \
} \
m_source << ")"; \
return *this; \
}
#define BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(type) \
BOOST_COMPUTE_META_KERNEL_DECLARE_SCALAR_TYPE_STREAM_OPERATOR(BOOST_PP_CAT(type, _)) \
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(BOOST_PP_CAT(BOOST_PP_CAT(type, 2), _)) \
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(BOOST_PP_CAT(BOOST_PP_CAT(type, 4), _)) \
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(BOOST_PP_CAT(BOOST_PP_CAT(type, 8), _)) \
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(BOOST_PP_CAT(BOOST_PP_CAT(type, 16), _))
class meta_kernel
{
public:
template<class T>
class argument
{
public:
argument(const std::string &name, size_t index)
: m_name(name),
m_index(index)
{
}
const std::string &name() const
{
return m_name;
}
size_t index() const
{
return m_index;
}
private:
std::string m_name;
size_t m_index;
};
explicit meta_kernel(const std::string &name)
: m_name(name)
{
}
meta_kernel(const meta_kernel &other)
{
m_source.str(other.m_source.str());
m_options = other.m_options;
}
meta_kernel& operator=(const meta_kernel &other)
{
if(this != &other){
m_source.str(other.m_source.str());
m_options = other.m_options;
}
return *this;
}
~meta_kernel()
{
}
std::string name() const
{
return m_name;
}
std::string source() const
{
std::stringstream stream;
// add pragmas
if(!m_pragmas.empty()){
stream << m_pragmas << "\n";
}
// add macros
stream << "#define boost_pair_type(t1, t2) _pair_ ## t1 ## _ ## t2 ## _t\n";
stream << "#define boost_pair_get(x, n) (n == 0 ? x.first ## x.second)\n";
stream << "#define boost_make_pair(t1, x, t2, y) (boost_pair_type(t1, t2)) { x, y }\n";
stream << "#define boost_tuple_get(x, n) (x.v ## n)\n";
// add type declaration source
stream << m_type_declaration_source.str() << "\n";
// add external function source
stream << m_external_function_source.str() << "\n";
// add kernel source
stream << "__kernel void " << m_name
<< "(" << boost::join(m_args, ", ") << ")\n"
<< "{\n" << m_source.str() << "\n}\n";
return stream.str();
}
kernel compile(const context &context, const std::string &options = std::string())
{
// generate the program source
std::string source = this->source();
// generate cache key
std::string cache_key = "__boost_meta_kernel_" +
static_cast<std::string>(detail::sha1(source));
// load program cache
boost::shared_ptr<program_cache> cache =
program_cache::get_global_cache(context);
std::string compile_options = m_options + options;
// load (or build) program from cache
::boost::compute::program program =
cache->get_or_build(cache_key, compile_options, source, context);
// create kernel
::boost::compute::kernel kernel = program.create_kernel(name());
// bind stored args
for(size_t i = 0; i < m_stored_args.size(); i++){
const detail::meta_kernel_stored_arg &arg = m_stored_args[i];
if(arg.m_size != 0){
kernel.set_arg(i, arg.m_size, arg.m_value);
}
}
// bind buffer args
for(size_t i = 0; i < m_stored_buffers.size(); i++){
const detail::meta_kernel_buffer_info &bi = m_stored_buffers[i];
kernel.set_arg(bi.index, bi.m_mem);
}
// bind svm args
for(size_t i = 0; i < m_stored_svm_ptrs.size(); i++){
const detail::meta_kernel_svm_info &spi = m_stored_svm_ptrs[i];
kernel.set_arg_svm_ptr(spi.index, spi.ptr);
}
return kernel;
}
template<class T>
size_t add_arg(const std::string &name)
{
std::stringstream stream;
stream << type<T>() << " " << name;
// add argument to list
m_args.push_back(stream.str());
// return index
return m_args.size() - 1;
}
template<class T>
size_t add_arg(memory_object::address_space address_space,
const std::string &name)
{
return add_arg_with_qualifiers<T>(address_space_prefix(address_space), name);
}
template<class T>
void set_arg(size_t index, const T &value)
{
if(index >= m_stored_args.size()){
m_stored_args.resize(index + 1);
}
m_stored_args[index] = detail::meta_kernel_stored_arg(value);
}
void set_arg(size_t index, const memory_object &mem)
{
set_arg<cl_mem>(index, mem.get());
}
void set_arg(size_t index, const image_sampler &sampler)
{
set_arg<cl_sampler>(index, cl_sampler(sampler));
}
template<class T>
size_t add_set_arg(const std::string &name, const T &value)
{
size_t index = add_arg<T>(name);
set_arg<T>(index, value);
return index;
}
void add_extension_pragma(const std::string &extension,
const std::string &value = "enable")
{
m_pragmas += "#pragma OPENCL EXTENSION " + extension + " : " + value + "\n";
}
void add_extension_pragma(const std::string &extension,
const std::string &value) const
{
return const_cast<meta_kernel *>(this)->add_extension_pragma(extension, value);
}
template<class T>
std::string type() const
{
std::stringstream stream;
// const qualifier
if(boost::is_const<T>::value){
stream << "const ";
}
// volatile qualifier
if(boost::is_volatile<T>::value){
stream << "volatile ";
}
// type
typedef
typename boost::remove_cv<
typename boost::remove_pointer<T>::type
>::type Type;
stream << type_name<Type>();
// pointer
if(boost::is_pointer<T>::value){
stream << "*";
}
// inject type pragmas and/or definitions
inject_type<Type>();
return stream.str();
}
template<class T>
std::string decl(const std::string &name) const
{
return type<T>() + " " + name;
}
template<class T, class Expr>
std::string decl(const std::string &name, const Expr &init) const
{
meta_kernel tmp((std::string()));
tmp << tmp.decl<T>(name) << " = " << init;
return tmp.m_source.str();
}
template<class T>
detail::meta_kernel_variable<T> var(const std::string &name) const
{
type<T>();
return make_var<T>(name);
}
template<class T>
detail::meta_kernel_literal<T> lit(const T &value) const
{
type<T>();
return detail::meta_kernel_literal<T>(value);
}
template<class T>
detail::meta_kernel_variable<T> expr(const std::string &expr) const
{
type<T>();
return detail::meta_kernel_variable<T>(expr);
}
// define stream operators for scalar and vector types
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(char)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(uchar)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(short)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(ushort)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(int)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(uint)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(long)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(ulong)
BOOST_COMPUTE_META_KERNEL_DECLARE_TYPE_STREAM_OPERATORS(double)
// define stream operators for float scalar and vector types
meta_kernel& operator<<(const float &x)
{
m_source << std::showpoint << x << 'f';
return *this;
}
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(float2_)
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(float4_)
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(float8_)
BOOST_COMPUTE_META_KERNEL_DECLARE_VECTOR_TYPE_STREAM_OPERATOR(float16_)
// define stream operators for variable types
template<class T>
meta_kernel& operator<<(const meta_kernel_variable<T> &variable)
{
return *this << variable.name();
}
// define stream operators for literal types
template<class T>
meta_kernel& operator<<(const meta_kernel_literal<T> &literal)
{
return *this << literal.value();
}
meta_kernel& operator<<(const meta_kernel_literal<bool> &literal)
{
return *this << (literal.value() ? "true" : "false");
}
meta_kernel& operator<<(const meta_kernel_literal<char> &literal)
{
const char c = literal.value();
switch(c){
// control characters
case '\0':
return *this << "'\\0'";
case '\a':
return *this << "'\\a'";
case '\b':
return *this << "'\\b'";
case '\t':
return *this << "'\\t'";
case '\n':
return *this << "'\\n'";
case '\v':
return *this << "'\\v'";
case '\f':
return *this << "'\\f'";
case '\r':
return *this << "'\\r'";
// characters which need escaping
case '\"':
case '\'':
case '\?':
case '\\':
return *this << "'\\" << c << "'";
// all other characters
default:
return *this << "'" << c << "'";
}
}
meta_kernel& operator<<(const meta_kernel_literal<signed char> &literal)
{
return *this << lit<char>(literal.value());
}
meta_kernel& operator<<(const meta_kernel_literal<unsigned char> &literal)
{
return *this << uint_(literal.value());
}
// define stream operators for strings
meta_kernel& operator<<(char ch)
{
m_source << ch;
return *this;
}
meta_kernel& operator<<(const char *string)
{
m_source << string;
return *this;
}
meta_kernel& operator<<(const std::string &string)
{
m_source << string;
return *this;
}
template<class T>
static detail::meta_kernel_variable<T> make_var(const std::string &name)
{
return detail::meta_kernel_variable<T>(name);
}
template<class T>
static detail::meta_kernel_literal<T> make_lit(const T &value)
{
return detail::meta_kernel_literal<T>(value);
}
template<class T>
static detail::meta_kernel_variable<T> make_expr(const std::string &expr)
{
return detail::meta_kernel_variable<T>(expr);
}
event exec(command_queue &queue)
{
return exec_1d(queue, 0, 1);
}
event exec_1d(command_queue &queue,
size_t global_work_offset,
size_t global_work_size)
{
const context &context = queue.get_context();
::boost::compute::kernel kernel = compile(context);
return queue.enqueue_1d_range_kernel(
kernel,
global_work_offset,
global_work_size,
0
);
}
event exec_1d(command_queue &queue,
size_t global_work_offset,
size_t global_work_size,
size_t local_work_size)
{
const context &context = queue.get_context();
::boost::compute::kernel kernel = compile(context);
return queue.enqueue_1d_range_kernel(
kernel,
global_work_offset,
global_work_size,
local_work_size
);
}
template<class T>
std::string get_buffer_identifier(const buffer &buffer,
const memory_object::address_space address_space =
memory_object::global_memory)
{
// check if we've already seen buffer
for(size_t i = 0; i < m_stored_buffers.size(); i++){
const detail::meta_kernel_buffer_info &bi = m_stored_buffers[i];
if(bi.m_mem == buffer.get() &&
bi.address_space == address_space){
return bi.identifier;
}
}
// create a new binding
std::string identifier =
"_buf" + lexical_cast<std::string>(m_stored_buffers.size());
size_t index = add_arg<T *>(address_space, identifier);
// store new buffer info
m_stored_buffers.push_back(
detail::meta_kernel_buffer_info(buffer, identifier, address_space, index));
return identifier;
}
template<class T>
std::string get_svm_identifier(const svm_ptr<T> &svm_ptr,
const memory_object::address_space address_space =
memory_object::global_memory)
{
BOOST_ASSERT(
(address_space == memory_object::global_memory)
|| (address_space == memory_object::constant_memory)
);
// check if we've already seen this pointer
for(size_t i = 0; i < m_stored_svm_ptrs.size(); i++){
const detail::meta_kernel_svm_info &spi = m_stored_svm_ptrs[i];
if(spi.ptr == svm_ptr.get() &&
spi.address_space == address_space){
return spi.identifier;
}
}
// create a new binding
std::string identifier =
"_svm_ptr" + lexical_cast<std::string>(m_stored_svm_ptrs.size());
size_t index = add_arg<T *>(address_space, identifier);
if(m_stored_svm_ptrs.empty()) {
m_options += std::string(" -cl-std=CL2.0");
}
// store new svm pointer info
m_stored_svm_ptrs.push_back(
detail::meta_kernel_svm_info(
svm_ptr, identifier, address_space, index
)
);
return identifier;
}
std::string get_image_identifier(const char *qualifiers, const image2d &image)
{
size_t index = add_arg_with_qualifiers<image2d>(qualifiers, "image");
set_arg(index, image);
return "image";
}
std::string get_sampler_identifier(bool normalized_coords,
cl_addressing_mode addressing_mode,
cl_filter_mode filter_mode)
{
(void) normalized_coords;
(void) addressing_mode;
(void) filter_mode;
m_pragmas += "const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |\n"
" CLK_ADDRESS_NONE |\n"
" CLK_FILTER_NEAREST;\n";
return "sampler";
}
template<class Expr>
static std::string expr_to_string(const Expr &expr)
{
meta_kernel tmp((std::string()));
tmp << expr;
return tmp.m_source.str();
}
template<class Predicate>
detail::invoked_function<bool, boost::tuple<Predicate> > if_(Predicate pred) const
{
return detail::invoked_function<bool, boost::tuple<Predicate> >(
"if", std::string(), boost::make_tuple(pred)
);
}
template<class Predicate>
detail::invoked_function<bool, boost::tuple<Predicate> > else_if_(Predicate pred) const
{
return detail::invoked_function<bool, boost::tuple<Predicate> >(
"else if", std::string(), boost::make_tuple(pred)
);
}
detail::meta_kernel_variable<cl_uint> get_global_id(size_t dim) const
{
return expr<cl_uint>("get_global_id(" + lexical_cast<std::string>(dim) + ")");
}
void add_function(const std::string &name, const std::string &source)
{
if(m_external_function_names.count(name)){
return;
}
m_external_function_names.insert(name);
m_external_function_source << source << "\n";
}
void add_function(const std::string &name,
const std::string &source,
const std::map<std::string, std::string> &definitions)
{
typedef std::map<std::string, std::string>::const_iterator iter;
std::stringstream s;
// add #define's
for(iter i = definitions.begin(); i != definitions.end(); i++){
s << "#define " << i->first;
if(!i->second.empty()){
s << " " << i->second;
}
s << "\n";
}
s << source << "\n";
// add #undef's
for(iter i = definitions.begin(); i != definitions.end(); i++){
s << "#undef " << i->first << "\n";
}
add_function(name, s.str());
}
template<class Type>
void add_type_declaration(const std::string &declaration)
{
const char *name = type_name<Type>();
// check if the type has already been declared
std::string source = m_type_declaration_source.str();
if(source.find(name) != std::string::npos){
return;
}
m_type_declaration_source << declaration;
}
template<class Type>
void inject_type() const
{
inject_type_impl<Type>()(const_cast<meta_kernel &>(*this));
}
// the insert_function_call() method inserts a call to a function with
// the given name tuple of argument values.
template<class ArgTuple>
void insert_function_call(const std::string &name, const ArgTuple &args)
{
*this << name << '(';
insert_function_call_args(args);
*this << ')';
}
// the insert_function_call_args() method takes a tuple of argument values
// and inserts them into the source string with a comma in-between each.
// this is useful for creating function calls given a tuple of values.
void insert_function_call_args(const boost::tuple<>&)
{
}
#define BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARG_TYPE(z, n, unused) \
inject_type<BOOST_PP_CAT(T, n)>();
#define BOOST_COMPUTE_META_KERNEL_STREAM_FUNCTION_ARG(z, n, unused) \
<< boost::get<BOOST_PP_DEC(n)>(args) << ", "
#define BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARGS(z, n, unused) \
template<BOOST_PP_ENUM_PARAMS(n, class T)> \
void insert_function_call_args( \
const boost::tuple<BOOST_PP_ENUM_PARAMS(n, T)> &args \
) \
{ \
BOOST_PP_REPEAT_FROM_TO( \
0, n, BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARG_TYPE, ~ \
) \
*this \
BOOST_PP_REPEAT_FROM_TO( \
1, n, BOOST_COMPUTE_META_KERNEL_STREAM_FUNCTION_ARG, ~ \
) \
<< boost::get<BOOST_PP_DEC(n)>(args); \
}
BOOST_PP_REPEAT_FROM_TO(
1, BOOST_COMPUTE_MAX_ARITY, BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARGS, ~
)
#undef BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARG_TYPE
#undef BOOST_COMPUTE_META_KERNEL_STREAM_FUNCTION_ARG
#undef BOOST_COMPUTE_META_KERNEL_INSERT_FUNCTION_ARGS
static const char* address_space_prefix(const memory_object::address_space value)
{
switch(value){
case memory_object::global_memory: return "__global";
case memory_object::local_memory: return "__local";
case memory_object::private_memory: return "__private";
case memory_object::constant_memory: return "__constant";
};
return 0; // unreachable
}
private:
template<class T>
size_t add_arg_with_qualifiers(const char *qualifiers, const std::string &name)
{
size_t index = add_arg<T>(name);
// update argument type declaration with qualifiers
std::stringstream s;
s << qualifiers << " " << m_args[index];
m_args[index] = s.str();
return index;
}
private:
std::string m_name;
std::stringstream m_source;
std::stringstream m_external_function_source;
std::stringstream m_type_declaration_source;
std::set<std::string> m_external_function_names;
std::vector<std::string> m_args;
std::string m_pragmas;
std::string m_options;
std::vector<detail::meta_kernel_stored_arg> m_stored_args;
std::vector<detail::meta_kernel_buffer_info> m_stored_buffers;
std::vector<detail::meta_kernel_svm_info> m_stored_svm_ptrs;
};
template<class ResultType, class ArgTuple>
inline meta_kernel&
operator<<(meta_kernel &kernel, const invoked_function<ResultType, ArgTuple> &expr)
{
if(!expr.source().empty()){
kernel.add_function(expr.name(), expr.source(), expr.definitions());
}
kernel.insert_function_call(expr.name(), expr.args());
return kernel;
}
template<class ResultType, class ArgTuple, class CaptureTuple>
inline meta_kernel&
operator<<(meta_kernel &kernel,
const invoked_closure<ResultType, ArgTuple, CaptureTuple> &expr)
{
if(!expr.source().empty()){
kernel.add_function(expr.name(), expr.source(), expr.definitions());
}
kernel << expr.name() << '(';
kernel.insert_function_call_args(expr.args());
kernel << ", ";
kernel.insert_function_call_args(expr.capture());
kernel << ')';
return kernel;
}
template<class Arg1, class Arg2, class Result>
inline meta_kernel& operator<<(meta_kernel &kernel,
const invoked_binary_operator<Arg1,
Arg2,
Result> &expr)
{
return kernel << "((" << expr.arg1() << ")"
<< expr.op()
<< "(" << expr.arg2() << "))";
}
template<class T, class IndexExpr>
inline meta_kernel& operator<<(meta_kernel &kernel,
const detail::device_ptr_index_expr<T, IndexExpr> &expr)
{
if(expr.m_index == 0){
return kernel <<
kernel.get_buffer_identifier<T>(expr.m_buffer) <<
'[' << expr.m_expr << ']';
}
else {
return kernel <<
kernel.get_buffer_identifier<T>(expr.m_buffer) <<
'[' << expr.m_index << "+(" << expr.m_expr << ")]";
}
}
template<class T1, class T2, class IndexExpr>
inline meta_kernel& operator<<(meta_kernel &kernel,
const detail::device_ptr_index_expr<std::pair<T1, T2>, IndexExpr> &expr)
{
typedef std::pair<T1, T2> T;
if(expr.m_index == 0){
return kernel <<
kernel.get_buffer_identifier<T>(expr.m_buffer) <<
'[' << expr.m_expr << ']';
}
else {
return kernel <<
kernel.get_buffer_identifier<T>(expr.m_buffer) <<
'[' << expr.m_index << "+(" << expr.m_expr << ")]";
}
}
// SVM requires OpenCL 2.0
#if defined(CL_VERSION_2_0) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED)
template<class T, class IndexExpr>
inline meta_kernel& operator<<(meta_kernel &kernel,
const svm_ptr_index_expr<T, IndexExpr> &expr)
{
return kernel <<
kernel.get_svm_identifier<T>(expr.m_svm_ptr) <<
'[' << expr.m_expr << ']';
}
#endif
template<class Predicate, class Arg>
inline meta_kernel& operator<<(meta_kernel &kernel,
const invoked_unary_negate_function<Predicate,
Arg> &expr)
{
return kernel << "!(" << expr.pred()(expr.expr()) << ')';
}
template<class Predicate, class Arg1, class Arg2>
inline meta_kernel& operator<<(meta_kernel &kernel,
const invoked_binary_negate_function<Predicate,
Arg1,
Arg2> &expr)
{
return kernel << "!(" << expr.pred()(expr.expr1(), expr.expr2()) << ')';
}
// get<N>() for vector types
template<size_t N, class Arg, class T>
inline meta_kernel& operator<<(meta_kernel &kernel,
const invoked_get<N, Arg, T> &expr)
{
BOOST_STATIC_ASSERT(N < 16);
if(N < 10){
return kernel << expr.m_arg << ".s" << uint_(N);
}
else if(N < 16){
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4307)
#endif
return kernel << expr.m_arg << ".s" << char('a' + (N - 10));
#ifdef _MSC_VER
# pragma warning(pop)
#endif
}
return kernel;
}
template<class T, class Arg>
inline meta_kernel& operator<<(meta_kernel &kernel,
const invoked_field<T, Arg> &expr)
{
return kernel << expr.m_arg << "." << expr.m_field;
}
template<class T, class Arg>
inline meta_kernel& operator<<(meta_kernel &k,
const invoked_as<T, Arg> &expr)
{
return k << "as_" << type_name<T>() << "(" << expr.m_arg << ")";
}
template<class T, class Arg>
inline meta_kernel& operator<<(meta_kernel &k,
const invoked_convert<T, Arg> &expr)
{
return k << "convert_" << type_name<T>() << "(" << expr.m_arg << ")";
}
template<class T, class Arg>
inline meta_kernel& operator<<(meta_kernel &k,
const invoked_identity<T, Arg> &expr)
{
return k << expr.m_arg;
}
template<>
struct inject_type_impl<double_>
{
void operator()(meta_kernel &kernel)
{
kernel.add_extension_pragma("cl_khr_fp64", "enable");
}
};
template<class Scalar, size_t N>
struct inject_type_impl<vector_type<Scalar, N> >
{
void operator()(meta_kernel &kernel)
{
kernel.inject_type<Scalar>();
}
};
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_DETAIL_META_KERNEL_HPP