202 lines
6.6 KiB
Plaintext
202 lines
6.6 KiB
Plaintext
// Copyright (c) 2006 Xiaogang Zhang
|
|
// Copyright (c) 2006 John Maddock
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// History:
|
|
// XZ wrote the original of this file as part of the Google
|
|
// Summer of Code 2006. JM modified it to fit into the
|
|
// Boost.Math conceptual framework better, and to ensure
|
|
// that the code continues to work no matter how many digits
|
|
// type T has.
|
|
|
|
#ifndef BOOST_MATH_ELLINT_1_HPP
|
|
#define BOOST_MATH_ELLINT_1_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/math/special_functions/math_fwd.hpp>
|
|
#include <boost/math/special_functions/ellint_rf.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/policies/error_handling.hpp>
|
|
#include <boost/math/tools/workaround.hpp>
|
|
#include <boost/math/special_functions/round.hpp>
|
|
|
|
// Elliptic integrals (complete and incomplete) of the first kind
|
|
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
|
|
|
|
namespace boost { namespace math {
|
|
|
|
template <class T1, class T2, class Policy>
|
|
typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
|
|
|
|
namespace detail{
|
|
|
|
template <typename T, typename Policy>
|
|
T ellint_k_imp(T k, const Policy& pol);
|
|
|
|
// Elliptic integral (Legendre form) of the first kind
|
|
template <typename T, typename Policy>
|
|
T ellint_f_imp(T phi, T k, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
using namespace boost::math::tools;
|
|
using namespace boost::math::constants;
|
|
|
|
static const char* function = "boost::math::ellint_f<%1%>(%1%,%1%)";
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(k);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(function);
|
|
|
|
if (abs(k) > 1)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"Got k = %1%, function requires |k| <= 1", k, pol);
|
|
}
|
|
|
|
bool invert = false;
|
|
if(phi < 0)
|
|
{
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
|
|
phi = fabs(phi);
|
|
invert = true;
|
|
}
|
|
|
|
T result;
|
|
|
|
if(phi >= tools::max_value<T>())
|
|
{
|
|
// Need to handle infinity as a special case:
|
|
result = policies::raise_overflow_error<T>(function, 0, pol);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|
}
|
|
else if(phi > 1 / tools::epsilon<T>())
|
|
{
|
|
// Phi is so large that phi%pi is necessarily zero (or garbage),
|
|
// just return the second part of the duplication formula:
|
|
result = 2 * phi * ellint_k_imp(k, pol) / constants::pi<T>();
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|
}
|
|
else
|
|
{
|
|
// Carlson's algorithm works only for |phi| <= pi/2,
|
|
// use the integrand's periodicity to normalize phi
|
|
//
|
|
// Xiaogang's original code used a cast to long long here
|
|
// but that fails if T has more digits than a long long,
|
|
// so rewritten to use fmod instead:
|
|
//
|
|
BOOST_MATH_INSTRUMENT_CODE("pi/2 = " << constants::pi<T>() / 2);
|
|
T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
|
|
T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(m);
|
|
int s = 1;
|
|
if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
|
|
{
|
|
m += 1;
|
|
s = -1;
|
|
rphi = constants::half_pi<T>() - rphi;
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
|
|
}
|
|
T sinp = sin(rphi);
|
|
sinp *= sinp;
|
|
T cosp = cos(rphi);
|
|
cosp *= cosp;
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
|
|
if(sinp > tools::min_value<T>())
|
|
{
|
|
//
|
|
// Use http://dlmf.nist.gov/19.25#E5, note that
|
|
// c-1 simplifies to cot^2(rphi) which avoid cancellation:
|
|
//
|
|
T c = 1 / sinp;
|
|
result = rphi == 0 ? static_cast<T>(0) : static_cast<T>(s * ellint_rf_imp(T(cosp / sinp), T(c - k * k), c, pol));
|
|
}
|
|
else
|
|
result = s * sin(rphi);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|
if(m != 0)
|
|
{
|
|
result += m * ellint_k_imp(k, pol);
|
|
BOOST_MATH_INSTRUMENT_VARIABLE(result);
|
|
}
|
|
}
|
|
return invert ? T(-result) : result;
|
|
}
|
|
|
|
// Complete elliptic integral (Legendre form) of the first kind
|
|
template <typename T, typename Policy>
|
|
T ellint_k_imp(T k, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
using namespace boost::math::tools;
|
|
|
|
static const char* function = "boost::math::ellint_k<%1%>(%1%)";
|
|
|
|
if (abs(k) > 1)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"Got k = %1%, function requires |k| <= 1", k, pol);
|
|
}
|
|
if (abs(k) == 1)
|
|
{
|
|
return policies::raise_overflow_error<T>(function, 0, pol);
|
|
}
|
|
|
|
T x = 0;
|
|
T y = 1 - k * k;
|
|
T z = 1;
|
|
T value = ellint_rf_imp(x, y, z, pol);
|
|
|
|
return value;
|
|
}
|
|
|
|
template <typename T, typename Policy>
|
|
inline typename tools::promote_args<T>::type ellint_1(T k, const Policy& pol, const mpl::true_&)
|
|
{
|
|
typedef typename tools::promote_args<T>::type result_type;
|
|
typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_k_imp(static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%)");
|
|
}
|
|
|
|
template <class T1, class T2>
|
|
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const mpl::false_&)
|
|
{
|
|
return boost::math::ellint_1(k, phi, policies::policy<>());
|
|
}
|
|
|
|
}
|
|
|
|
// Complete elliptic integral (Legendre form) of the first kind
|
|
template <typename T>
|
|
inline typename tools::promote_args<T>::type ellint_1(T k)
|
|
{
|
|
return ellint_1(k, policies::policy<>());
|
|
}
|
|
|
|
// Elliptic integral (Legendre form) of the first kind
|
|
template <class T1, class T2, class Policy>
|
|
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol)
|
|
{
|
|
typedef typename tools::promote_args<T1, T2>::type result_type;
|
|
typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_f_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%,%1%)");
|
|
}
|
|
|
|
template <class T1, class T2>
|
|
inline typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi)
|
|
{
|
|
typedef typename policies::is_policy<T2>::type tag_type;
|
|
return detail::ellint_1(k, phi, tag_type());
|
|
}
|
|
|
|
}} // namespaces
|
|
|
|
#endif // BOOST_MATH_ELLINT_1_HPP
|
|
|