377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Copyright (c) 2006 John Maddock
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| //  History:
 | |
| //  XZ wrote the original of this file as part of the Google
 | |
| //  Summer of Code 2006.  JM modified it to fit into the
 | |
| //  Boost.Math conceptual framework better, and to correctly
 | |
| //  handle the various corner cases.
 | |
| //
 | |
| 
 | |
| #ifndef BOOST_MATH_ELLINT_3_HPP
 | |
| #define BOOST_MATH_ELLINT_3_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/special_functions/ellint_rf.hpp>
 | |
| #include <boost/math/special_functions/ellint_rj.hpp>
 | |
| #include <boost/math/special_functions/ellint_1.hpp>
 | |
| #include <boost/math/special_functions/ellint_2.hpp>
 | |
| #include <boost/math/special_functions/log1p.hpp>
 | |
| #include <boost/math/special_functions/atanh.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| #include <boost/math/tools/workaround.hpp>
 | |
| #include <boost/math/special_functions/round.hpp>
 | |
| 
 | |
| // Elliptic integrals (complete and incomplete) of the third kind
 | |
| // Carlson, Numerische Mathematik, vol 33, 1 (1979)
 | |
| 
 | |
| namespace boost { namespace math { 
 | |
|    
 | |
| namespace detail{
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T ellint_pi_imp(T v, T k, T vc, const Policy& pol);
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the third kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_pi_imp(T v, T phi, T k, T vc, const Policy& pol)
 | |
| {
 | |
|    // Note vc = 1-v presumably without cancellation error.
 | |
|    BOOST_MATH_STD_USING
 | |
| 
 | |
|    static const char* function = "boost::math::ellint_3<%1%>(%1%,%1%,%1%)";
 | |
| 
 | |
|    if(abs(k) > 1)
 | |
|    {
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Got k = %1%, function requires |k| <= 1", k, pol);
 | |
|    }
 | |
| 
 | |
|    T sphi = sin(fabs(phi));
 | |
|    T result = 0;
 | |
| 
 | |
|    // Special cases first:
 | |
|    if(v == 0)
 | |
|    {
 | |
|       // A&S 17.7.18 & 19
 | |
|       return (k == 0) ? phi : ellint_f_imp(phi, k, pol);
 | |
|    }
 | |
|    if((v > 0) && (1 / v < (sphi * sphi)))
 | |
|    {
 | |
|       // Complex result is a domain error:
 | |
|       return policies::raise_domain_error<T>(function,
 | |
|          "Got v = %1%, but result is complex for v > 1 / sin^2(phi)", v, pol);
 | |
|    }
 | |
| 
 | |
|    if(v == 1)
 | |
|    {
 | |
|       // http://functions.wolfram.com/08.06.03.0008.01
 | |
|       T m = k * k;
 | |
|       result = sqrt(1 - m * sphi * sphi) * tan(phi) - ellint_e_imp(phi, k, pol);
 | |
|       result /= 1 - m;
 | |
|       result += ellint_f_imp(phi, k, pol);
 | |
|       return result;
 | |
|    }
 | |
|    if(phi == constants::half_pi<T>())
 | |
|    {
 | |
|       // Have to filter this case out before the next
 | |
|       // special case, otherwise we might get an infinity from
 | |
|       // tan(phi).
 | |
|       // Also note that since we can't represent PI/2 exactly
 | |
|       // in a T, this is a bit of a guess as to the users true
 | |
|       // intent...
 | |
|       //
 | |
|       return ellint_pi_imp(v, k, vc, pol);
 | |
|    }
 | |
|    if((phi > constants::half_pi<T>()) || (phi < 0))
 | |
|    {
 | |
|       // Carlson's algorithm works only for |phi| <= pi/2,
 | |
|       // use the integrand's periodicity to normalize phi
 | |
|       //
 | |
|       // Xiaogang's original code used a cast to long long here
 | |
|       // but that fails if T has more digits than a long long,
 | |
|       // so rewritten to use fmod instead:
 | |
|       //
 | |
|       // See http://functions.wolfram.com/08.06.16.0002.01
 | |
|       //
 | |
|       if(fabs(phi) > 1 / tools::epsilon<T>())
 | |
|       {
 | |
|          if(v > 1)
 | |
|             return policies::raise_domain_error<T>(
 | |
|             function,
 | |
|             "Got v = %1%, but this is only supported for 0 <= phi <= pi/2", v, pol);
 | |
|          //  
 | |
|          // Phi is so large that phi%pi is necessarily zero (or garbage),
 | |
|          // just return the second part of the duplication formula:
 | |
|          //
 | |
|          result = 2 * fabs(phi) * ellint_pi_imp(v, k, vc, pol) / constants::pi<T>();
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          T rphi = boost::math::tools::fmod_workaround(T(fabs(phi)), T(constants::half_pi<T>()));
 | |
|          T m = boost::math::round((fabs(phi) - rphi) / constants::half_pi<T>());
 | |
|          int sign = 1;
 | |
|          if((m != 0) && (k >= 1))
 | |
|          {
 | |
|             return policies::raise_domain_error<T>(function, "Got k=1 and phi=%1% but the result is complex in that domain", phi, pol);
 | |
|          }
 | |
|          if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
 | |
|          {
 | |
|             m += 1;
 | |
|             sign = -1;
 | |
|             rphi = constants::half_pi<T>() - rphi;
 | |
|          }
 | |
|          result = sign * ellint_pi_imp(v, rphi, k, vc, pol);
 | |
|          if((m > 0) && (vc > 0))
 | |
|             result += m * ellint_pi_imp(v, k, vc, pol);
 | |
|       }
 | |
|       return phi < 0 ? T(-result) : result;
 | |
|    }
 | |
|    if(k == 0)
 | |
|    {
 | |
|       // A&S 17.7.20:
 | |
|       if(v < 1)
 | |
|       {
 | |
|          T vcr = sqrt(vc);
 | |
|          return atan(vcr * tan(phi)) / vcr;
 | |
|       }
 | |
|       else if(v == 1)
 | |
|       {
 | |
|          return tan(phi);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          // v > 1:
 | |
|          T vcr = sqrt(-vc);
 | |
|          T arg = vcr * tan(phi);
 | |
|          return (boost::math::log1p(arg, pol) - boost::math::log1p(-arg, pol)) / (2 * vcr);
 | |
|       }
 | |
|    }
 | |
|    if(v < 0)
 | |
|    {
 | |
|       //
 | |
|       // If we don't shift to 0 <= v <= 1 we get
 | |
|       // cancellation errors later on.  Use
 | |
|       // A&S 17.7.15/16 to shift to v > 0.
 | |
|       //
 | |
|       // Mathematica simplifies the expressions
 | |
|       // given in A&S as follows (with thanks to
 | |
|       // Rocco Romeo for figuring these out!):
 | |
|       //
 | |
|       // V = (k2 - n)/(1 - n)
 | |
|       // Assuming[(k2 >= 0 && k2 <= 1) && n < 0, FullSimplify[Sqrt[(1 - V)*(1 - k2 / V)] / Sqrt[((1 - n)*(1 - k2 / n))]]]
 | |
|       // Result: ((-1 + k2) n) / ((-1 + n) (-k2 + n))
 | |
|       //
 | |
|       // Assuming[(k2 >= 0 && k2 <= 1) && n < 0, FullSimplify[k2 / (Sqrt[-n*(k2 - n) / (1 - n)] * Sqrt[(1 - n)*(1 - k2 / n)])]]
 | |
|       // Result : k2 / (k2 - n)
 | |
|       //
 | |
|       // Assuming[(k2 >= 0 && k2 <= 1) && n < 0, FullSimplify[Sqrt[1 / ((1 - n)*(1 - k2 / n))]]]
 | |
|       // Result : Sqrt[n / ((k2 - n) (-1 + n))]
 | |
|       //
 | |
|       T k2 = k * k;
 | |
|       T N = (k2 - v) / (1 - v);
 | |
|       T Nm1 = (1 - k2) / (1 - v);
 | |
|       T p2 = -v * N;
 | |
|       T t;
 | |
|       if(p2 <= tools::min_value<T>())
 | |
|          p2 = sqrt(-v) * sqrt(N);
 | |
|       else
 | |
|          p2 = sqrt(p2);
 | |
|       T delta = sqrt(1 - k2 * sphi * sphi);
 | |
|       if(N > k2)
 | |
|       {
 | |
|          result = ellint_pi_imp(N, phi, k, Nm1, pol);
 | |
|          result *= v / (v - 1);
 | |
|          result *= (k2 - 1) / (v - k2);
 | |
|       }
 | |
| 
 | |
|       if(k != 0)
 | |
|       {
 | |
|          t = ellint_f_imp(phi, k, pol);
 | |
|          t *= k2 / (k2 - v);
 | |
|          result += t;
 | |
|       }
 | |
|       t = v / ((k2 - v) * (v - 1));
 | |
|       if(t > tools::min_value<T>())
 | |
|       {
 | |
|          result += atan((p2 / 2) * sin(2 * phi) / delta) * sqrt(t);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          result += atan((p2 / 2) * sin(2 * phi) / delta) * sqrt(fabs(1 / (k2 - v))) * sqrt(fabs(v / (v - 1)));
 | |
|       }
 | |
|       return result;
 | |
|    }
 | |
|    if(k == 1)
 | |
|    {
 | |
|       // See http://functions.wolfram.com/08.06.03.0013.01
 | |
|       result = sqrt(v) * atanh(sqrt(v) * sin(phi)) - log(1 / cos(phi) + tan(phi));
 | |
|       result /= v - 1;
 | |
|       return result;
 | |
|    }
 | |
| #if 0  // disabled but retained for future reference: see below.
 | |
|    if(v > 1)
 | |
|    {
 | |
|       //
 | |
|       // If v > 1 we can use the identity in A&S 17.7.7/8
 | |
|       // to shift to 0 <= v <= 1.  In contrast to previous
 | |
|       // revisions of this header, this identity does now work
 | |
|       // but appears not to produce better error rates in 
 | |
|       // practice.  Archived here for future reference...
 | |
|       //
 | |
|       T k2 = k * k;
 | |
|       T N = k2 / v;
 | |
|       T Nm1 = (v - k2) / v;
 | |
|       T p1 = sqrt((-vc) * (1 - k2 / v));
 | |
|       T delta = sqrt(1 - k2 * sphi * sphi);
 | |
|       //
 | |
|       // These next two terms have a large amount of cancellation
 | |
|       // so it's not clear if this relation is useable even if
 | |
|       // the issues with phi > pi/2 can be fixed:
 | |
|       //
 | |
|       result = -ellint_pi_imp(N, phi, k, Nm1, pol);
 | |
|       result += ellint_f_imp(phi, k, pol);
 | |
|       //
 | |
|       // This log term gives the complex result when
 | |
|       //     n > 1/sin^2(phi)
 | |
|       // However that case is dealt with as an error above, 
 | |
|       // so we should always get a real result here:
 | |
|       //
 | |
|       result += log((delta + p1 * tan(phi)) / (delta - p1 * tan(phi))) / (2 * p1);
 | |
|       return result;
 | |
|    }
 | |
| #endif
 | |
|    //
 | |
|    // Carlson's algorithm works only for |phi| <= pi/2,
 | |
|    // by the time we get here phi should already have been
 | |
|    // normalised above.
 | |
|    //
 | |
|    BOOST_ASSERT(fabs(phi) < constants::half_pi<T>());
 | |
|    BOOST_ASSERT(phi >= 0);
 | |
|    T x, y, z, p, t;
 | |
|    T cosp = cos(phi);
 | |
|    x = cosp * cosp;
 | |
|    t = sphi * sphi;
 | |
|    y = 1 - k * k * t;
 | |
|    z = 1;
 | |
|    if(v * t < 0.5)
 | |
|       p = 1 - v * t;
 | |
|    else
 | |
|       p = x + vc * t;
 | |
|    result = sphi * (ellint_rf_imp(x, y, z, pol) + v * t * ellint_rj_imp(x, y, z, p, pol) / 3);
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| // Complete elliptic integral (Legendre form) of the third kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_pi_imp(T v, T k, T vc, const Policy& pol)
 | |
| {
 | |
|     // Note arg vc = 1-v, possibly without cancellation errors
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     static const char* function = "boost::math::ellint_pi<%1%>(%1%,%1%)";
 | |
| 
 | |
|     if (abs(k) >= 1)
 | |
|     {
 | |
|        return policies::raise_domain_error<T>(function,
 | |
|             "Got k = %1%, function requires |k| <= 1", k, pol);
 | |
|     }
 | |
|     if(vc <= 0)
 | |
|     {
 | |
|        // Result is complex:
 | |
|        return policies::raise_domain_error<T>(function,
 | |
|             "Got v = %1%, function requires v < 1", v, pol);
 | |
|     }
 | |
| 
 | |
|     if(v == 0)
 | |
|     {
 | |
|        return (k == 0) ? boost::math::constants::pi<T>() / 2 : ellint_k_imp(k, pol);
 | |
|     }
 | |
| 
 | |
|     if(v < 0)
 | |
|     {
 | |
|        // Apply A&S 17.7.17:
 | |
|        T k2 = k * k;
 | |
|        T N = (k2 - v) / (1 - v);
 | |
|        T Nm1 = (1 - k2) / (1 - v);
 | |
|        T result = 0;
 | |
|        result = boost::math::detail::ellint_pi_imp(N, k, Nm1, pol);
 | |
|        // This next part is split in two to avoid spurious over/underflow:
 | |
|        result *= -v / (1 - v);
 | |
|        result *= (1 - k2) / (k2 - v);
 | |
|        result += ellint_k_imp(k, pol) * k2 / (k2 - v);
 | |
|        return result;
 | |
|     }
 | |
| 
 | |
|     T x = 0;
 | |
|     T y = 1 - k * k;
 | |
|     T z = 1;
 | |
|     T p = vc;
 | |
|     T value = ellint_rf_imp(x, y, z, pol) + v * ellint_rj_imp(x, y, z, p, pol) / 3;
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| template <class T1, class T2, class T3>
 | |
| inline typename tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi, const mpl::false_&)
 | |
| {
 | |
|    return boost::math::ellint_3(k, v, phi, policies::policy<>());
 | |
| }
 | |
| 
 | |
| template <class T1, class T2, class Policy>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v, const Policy& pol, const mpl::true_&)
 | |
| {
 | |
|    typedef typename tools::promote_args<T1, T2>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(
 | |
|       detail::ellint_pi_imp(
 | |
|          static_cast<value_type>(v), 
 | |
|          static_cast<value_type>(k),
 | |
|          static_cast<value_type>(1-v),
 | |
|          pol), "boost::math::ellint_3<%1%>(%1%,%1%)");
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| template <class T1, class T2, class T3, class Policy>
 | |
| inline typename tools::promote_args<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi, const Policy& pol)
 | |
| {
 | |
|    typedef typename tools::promote_args<T1, T2, T3>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(
 | |
|       detail::ellint_pi_imp(
 | |
|          static_cast<value_type>(v), 
 | |
|          static_cast<value_type>(phi), 
 | |
|          static_cast<value_type>(k),
 | |
|          static_cast<value_type>(1-v),
 | |
|          pol), "boost::math::ellint_3<%1%>(%1%,%1%,%1%)");
 | |
| }
 | |
| 
 | |
| template <class T1, class T2, class T3>
 | |
| typename detail::ellint_3_result<T1, T2, T3>::type ellint_3(T1 k, T2 v, T3 phi)
 | |
| {
 | |
|    typedef typename policies::is_policy<T3>::type tag_type;
 | |
|    return detail::ellint_3(k, v, phi, tag_type());
 | |
| }
 | |
| 
 | |
| template <class T1, class T2>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_3(T1 k, T2 v)
 | |
| {
 | |
|    return ellint_3(k, v, policies::policy<>());
 | |
| }
 | |
| 
 | |
| }} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_ELLINT_3_HPP
 | |
| 
 | 
