708 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			708 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Boost rational.hpp header file  ------------------------------------------//
 | |
| 
 | |
| //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
 | |
| //  distribute this software is granted provided this copyright notice appears
 | |
| //  in all copies. This software is provided "as is" without express or
 | |
| //  implied warranty, and with no claim as to its suitability for any purpose.
 | |
| 
 | |
| // boostinspect:nolicense (don't complain about the lack of a Boost license)
 | |
| // (Paul Moore hasn't been in contact for years, so there's no way to change the
 | |
| // license.)
 | |
| 
 | |
| //  See http://www.boost.org/libs/rational for documentation.
 | |
| 
 | |
| //  Credits:
 | |
| //  Thanks to the boost mailing list in general for useful comments.
 | |
| //  Particular contributions included:
 | |
| //    Andrew D Jewell, for reminding me to take care to avoid overflow
 | |
| //    Ed Brey, for many comments, including picking up on some dreadful typos
 | |
| //    Stephen Silver contributed the test suite and comments on user-defined
 | |
| //    IntType
 | |
| //    Nickolay Mladenov, for the implementation of operator+=
 | |
| 
 | |
| //  Revision History
 | |
| //  02 Sep 13  Remove unneeded forward declarations; tweak private helper
 | |
| //             function (Daryle Walker)
 | |
| //  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
 | |
| //             (Daryle Walker)
 | |
| //  27 Aug 13  Add cross-version constructor template, plus some private helper
 | |
| //             functions; add constructor to exception class to take custom
 | |
| //             messages (Daryle Walker)
 | |
| //  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
 | |
| //  05 May 12  Reduced use of implicit gcd (Mario Lang)
 | |
| //  05 Nov 06  Change rational_cast to not depend on division between different
 | |
| //             types (Daryle Walker)
 | |
| //  04 Nov 06  Off-load GCD and LCM to Boost.Math; add some invariant checks;
 | |
| //             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
 | |
| //  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
 | |
| //             divisions; the rational-value version now uses continued fraction
 | |
| //             expansion to avoid overflows, for bug #798357 (Daryle Walker)
 | |
| //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
 | |
| //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
 | |
| //             (Joaquín M López Muñoz)
 | |
| //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
 | |
| //  28 Sep 02  Use _left versions of operators from operators.hpp
 | |
| //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
 | |
| //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
 | |
| //  05 Feb 01  Update operator>> to tighten up input syntax
 | |
| //  05 Feb 01  Final tidy up of gcd code prior to the new release
 | |
| //  27 Jan 01  Recode abs() without relying on abs(IntType)
 | |
| //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
 | |
| //             tidy up a number of areas, use newer features of operators.hpp
 | |
| //             (reduces space overhead to zero), add operator!,
 | |
| //             introduce explicit mixed-mode arithmetic operations
 | |
| //  12 Jan 01  Include fixes to handle a user-defined IntType better
 | |
| //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
 | |
| //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
 | |
| //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
 | |
| //             affected (Beman Dawes)
 | |
| //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
 | |
| //  14 Dec 99  Modifications based on comments from the boost list
 | |
| //  09 Dec 99  Initial Version (Paul Moore)
 | |
| 
 | |
| #ifndef BOOST_RATIONAL_HPP
 | |
| #define BOOST_RATIONAL_HPP
 | |
| 
 | |
| #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
 | |
| #ifndef BOOST_NO_IOSTREAM
 | |
| #include <iomanip>               // for std::setw
 | |
| #include <ios>                   // for std::noskipws, streamsize
 | |
| #include <istream>               // for std::istream
 | |
| #include <ostream>               // for std::ostream
 | |
| #include <sstream>               // for std::ostringstream
 | |
| #endif
 | |
| #include <cstddef>               // for NULL
 | |
| #include <stdexcept>             // for std::domain_error
 | |
| #include <string>                // for std::string implicit constructor
 | |
| #include <boost/operators.hpp>   // for boost::addable etc
 | |
| #include <cstdlib>               // for std::abs
 | |
| #include <boost/call_traits.hpp> // for boost::call_traits
 | |
| #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
 | |
| #include <boost/assert.hpp>      // for BOOST_ASSERT
 | |
| #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
 | |
| #include <limits>                // for std::numeric_limits
 | |
| #include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
 | |
| #include <boost/throw_exception.hpp>
 | |
| 
 | |
| // Control whether depreciated GCD and LCM functions are included (default: yes)
 | |
| #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
 | |
| #define BOOST_CONTROL_RATIONAL_HAS_GCD  1
 | |
| #endif
 | |
| 
 | |
| namespace boost {
 | |
| 
 | |
| #if BOOST_CONTROL_RATIONAL_HAS_GCD
 | |
| template <typename IntType>
 | |
| IntType gcd(IntType n, IntType m)
 | |
| {
 | |
|     // Defer to the version in Boost.Math
 | |
|     return integer::gcd( n, m );
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| IntType lcm(IntType n, IntType m)
 | |
| {
 | |
|     // Defer to the version in Boost.Math
 | |
|     return integer::lcm( n, m );
 | |
| }
 | |
| #endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
 | |
| 
 | |
| class bad_rational : public std::domain_error
 | |
| {
 | |
| public:
 | |
|     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
 | |
|     explicit bad_rational( char const *what ) : std::domain_error( what ) {}
 | |
| };
 | |
| 
 | |
| template <typename IntType>
 | |
| class rational :
 | |
|     less_than_comparable < rational<IntType>,
 | |
|     equality_comparable < rational<IntType>,
 | |
|     less_than_comparable2 < rational<IntType>, IntType,
 | |
|     equality_comparable2 < rational<IntType>, IntType,
 | |
|     addable < rational<IntType>,
 | |
|     subtractable < rational<IntType>,
 | |
|     multipliable < rational<IntType>,
 | |
|     dividable < rational<IntType>,
 | |
|     addable2 < rational<IntType>, IntType,
 | |
|     subtractable2 < rational<IntType>, IntType,
 | |
|     subtractable2_left < rational<IntType>, IntType,
 | |
|     multipliable2 < rational<IntType>, IntType,
 | |
|     dividable2 < rational<IntType>, IntType,
 | |
|     dividable2_left < rational<IntType>, IntType,
 | |
|     incrementable < rational<IntType>,
 | |
|     decrementable < rational<IntType>
 | |
|     > > > > > > > > > > > > > > > >
 | |
| {
 | |
|     // Class-wide pre-conditions
 | |
|     BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
 | |
| 
 | |
|     // Helper types
 | |
|     typedef typename boost::call_traits<IntType>::param_type param_type;
 | |
| 
 | |
|     struct helper { IntType parts[2]; };
 | |
|     typedef IntType (helper::* bool_type)[2];
 | |
| 
 | |
| public:
 | |
|     // Component type
 | |
|     typedef IntType int_type;
 | |
| 
 | |
|     BOOST_CONSTEXPR
 | |
|     rational() : num(0), den(1) {}
 | |
|     BOOST_CONSTEXPR
 | |
|     rational(param_type n) : num(n), den(1) {}
 | |
|     rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
 | |
| 
 | |
| #ifndef BOOST_NO_MEMBER_TEMPLATES
 | |
|     template < typename NewType >
 | |
|     BOOST_CONSTEXPR explicit
 | |
|        rational(rational<NewType> const &r)
 | |
|        : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
 | |
|        int_type(r.denominator())) ? r.denominator() :
 | |
|        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
 | |
| #endif
 | |
| 
 | |
|     // Default copy constructor and assignment are fine
 | |
| 
 | |
|     // Add assignment from IntType
 | |
|     rational& operator=(param_type i) { num = i; den = 1; return *this; }
 | |
| 
 | |
|     // Assign in place
 | |
|     rational& assign(param_type n, param_type d);
 | |
| 
 | |
|     // Access to representation
 | |
|     BOOST_CONSTEXPR
 | |
|     const IntType& numerator() const { return num; }
 | |
|     BOOST_CONSTEXPR
 | |
|     const IntType& denominator() const { return den; }
 | |
| 
 | |
|     // Arithmetic assignment operators
 | |
|     rational& operator+= (const rational& r);
 | |
|     rational& operator-= (const rational& r);
 | |
|     rational& operator*= (const rational& r);
 | |
|     rational& operator/= (const rational& r);
 | |
| 
 | |
|     rational& operator+= (param_type i) { num += i * den; return *this; }
 | |
|     rational& operator-= (param_type i) { num -= i * den; return *this; }
 | |
|     rational& operator*= (param_type i);
 | |
|     rational& operator/= (param_type i);
 | |
| 
 | |
|     // Increment and decrement
 | |
|     const rational& operator++() { num += den; return *this; }
 | |
|     const rational& operator--() { num -= den; return *this; }
 | |
| 
 | |
|     // Operator not
 | |
|     BOOST_CONSTEXPR
 | |
|     bool operator!() const { return !num; }
 | |
| 
 | |
|     // Boolean conversion
 | |
|     
 | |
| #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
 | |
|     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
 | |
|     // following, hence we selectively disable that option for the
 | |
|     // offending memfun.
 | |
| #pragma parse_mfunc_templ off
 | |
| #endif
 | |
| 
 | |
|     BOOST_CONSTEXPR
 | |
|     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
 | |
| 
 | |
| #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
 | |
| #pragma parse_mfunc_templ reset
 | |
| #endif
 | |
| 
 | |
|     // Comparison operators
 | |
|     bool operator< (const rational& r) const;
 | |
|     BOOST_CONSTEXPR
 | |
|     bool operator== (const rational& r) const;
 | |
| 
 | |
|     bool operator< (param_type i) const;
 | |
|     bool operator> (param_type i) const;
 | |
|     BOOST_CONSTEXPR
 | |
|     bool operator== (param_type i) const;
 | |
| 
 | |
| private:
 | |
|     // Implementation - numerator and denominator (normalized).
 | |
|     // Other possibilities - separate whole-part, or sign, fields?
 | |
|     IntType num;
 | |
|     IntType den;
 | |
| 
 | |
|     // Helper functions
 | |
|     static BOOST_CONSTEXPR
 | |
|     int_type inner_gcd( param_type a, param_type b, int_type const &zero =
 | |
|      int_type(0) )
 | |
|     { return b == zero ? a : inner_gcd(b, a % b, zero); }
 | |
| 
 | |
|     static BOOST_CONSTEXPR
 | |
|     int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
 | |
|     { return x < zero ? -x : +x; }
 | |
| 
 | |
|     // Representation note: Fractions are kept in normalized form at all
 | |
|     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
 | |
|     // In particular, note that the implementation of abs() below relies
 | |
|     // on den always being positive.
 | |
|     bool test_invariant() const;
 | |
|     void normalize();
 | |
| 
 | |
|     static BOOST_CONSTEXPR
 | |
|     bool is_normalized( param_type n, param_type d, int_type const &zero =
 | |
|      int_type(0), int_type const &one = int_type(1) )
 | |
|     {
 | |
|         return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
 | |
|          d, zero), zero ) == one;
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Assign in place
 | |
| template <typename IntType>
 | |
| inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
 | |
| {
 | |
|     return *this = rational( n, d );
 | |
| }
 | |
| 
 | |
| // Unary plus and minus
 | |
| template <typename IntType>
 | |
| BOOST_CONSTEXPR
 | |
| inline rational<IntType> operator+ (const rational<IntType>& r)
 | |
| {
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| inline rational<IntType> operator- (const rational<IntType>& r)
 | |
| {
 | |
|     return rational<IntType>(-r.numerator(), r.denominator());
 | |
| }
 | |
| 
 | |
| // Arithmetic assignment operators
 | |
| template <typename IntType>
 | |
| rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
 | |
| {
 | |
|     // This calculation avoids overflow, and minimises the number of expensive
 | |
|     // calculations. Thanks to Nickolay Mladenov for this algorithm.
 | |
|     //
 | |
|     // Proof:
 | |
|     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
 | |
|     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
 | |
|     //
 | |
|     // The result is (a*d1 + c*b1) / (b1*d1*g).
 | |
|     // Now we have to normalize this ratio.
 | |
|     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
 | |
|     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
 | |
|     // But since gcd(a,b1)=1 we have h=1.
 | |
|     // Similarly h|d1 leads to h=1.
 | |
|     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
 | |
|     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
 | |
|     // Which proves that instead of normalizing the result, it is better to
 | |
|     // divide num and den by gcd((a*d1 + c*b1), g)
 | |
| 
 | |
|     // Protect against self-modification
 | |
|     IntType r_num = r.num;
 | |
|     IntType r_den = r.den;
 | |
| 
 | |
|     IntType g = integer::gcd(den, r_den);
 | |
|     den /= g;  // = b1 from the calculations above
 | |
|     num = num * (r_den / g) + r_num * den;
 | |
|     g = integer::gcd(num, g);
 | |
|     num /= g;
 | |
|     den *= r_den/g;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
 | |
| {
 | |
|     // Protect against self-modification
 | |
|     IntType r_num = r.num;
 | |
|     IntType r_den = r.den;
 | |
| 
 | |
|     // This calculation avoids overflow, and minimises the number of expensive
 | |
|     // calculations. It corresponds exactly to the += case above
 | |
|     IntType g = integer::gcd(den, r_den);
 | |
|     den /= g;
 | |
|     num = num * (r_den / g) - r_num * den;
 | |
|     g = integer::gcd(num, g);
 | |
|     num /= g;
 | |
|     den *= r_den/g;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
 | |
| {
 | |
|     // Protect against self-modification
 | |
|     IntType r_num = r.num;
 | |
|     IntType r_den = r.den;
 | |
| 
 | |
|     // Avoid overflow and preserve normalization
 | |
|     IntType gcd1 = integer::gcd(num, r_den);
 | |
|     IntType gcd2 = integer::gcd(r_num, den);
 | |
|     num = (num/gcd1) * (r_num/gcd2);
 | |
|     den = (den/gcd2) * (r_den/gcd1);
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
 | |
| {
 | |
|     // Protect against self-modification
 | |
|     IntType r_num = r.num;
 | |
|     IntType r_den = r.den;
 | |
| 
 | |
|     // Avoid repeated construction
 | |
|     IntType zero(0);
 | |
| 
 | |
|     // Trap division by zero
 | |
|     if (r_num == zero)
 | |
|         BOOST_THROW_EXCEPTION(bad_rational());
 | |
|     if (num == zero)
 | |
|         return *this;
 | |
| 
 | |
|     // Avoid overflow and preserve normalization
 | |
|     IntType gcd1 = integer::gcd(num, r_num);
 | |
|     IntType gcd2 = integer::gcd(r_den, den);
 | |
|     num = (num/gcd1) * (r_den/gcd2);
 | |
|     den = (den/gcd2) * (r_num/gcd1);
 | |
| 
 | |
|     if (den < zero) {
 | |
|         num = -num;
 | |
|         den = -den;
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| // Mixed-mode operators
 | |
| template <typename IntType>
 | |
| inline rational<IntType>&
 | |
| rational<IntType>::operator*= (param_type i)
 | |
| {
 | |
|     // Avoid overflow and preserve normalization
 | |
|     IntType gcd = integer::gcd(i, den);
 | |
|     num *= i / gcd;
 | |
|     den /= gcd;
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| rational<IntType>&
 | |
| rational<IntType>::operator/= (param_type i)
 | |
| {
 | |
|     // Avoid repeated construction
 | |
|     IntType const zero(0);
 | |
| 
 | |
|     if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
 | |
|     if (num == zero) return *this;
 | |
| 
 | |
|     // Avoid overflow and preserve normalization
 | |
|     IntType const gcd = integer::gcd(num, i);
 | |
|     num /= gcd;
 | |
|     den *= i / gcd;
 | |
| 
 | |
|     if (den < zero) {
 | |
|         num = -num;
 | |
|         den = -den;
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| // Comparison operators
 | |
| template <typename IntType>
 | |
| bool rational<IntType>::operator< (const rational<IntType>& r) const
 | |
| {
 | |
|     // Avoid repeated construction
 | |
|     int_type const  zero( 0 );
 | |
| 
 | |
|     // This should really be a class-wide invariant.  The reason for these
 | |
|     // checks is that for 2's complement systems, INT_MIN has no corresponding
 | |
|     // positive, so negating it during normalization keeps it INT_MIN, which
 | |
|     // is bad for later calculations that assume a positive denominator.
 | |
|     BOOST_ASSERT( this->den > zero );
 | |
|     BOOST_ASSERT( r.den > zero );
 | |
| 
 | |
|     // Determine relative order by expanding each value to its simple continued
 | |
|     // fraction representation using the Euclidian GCD algorithm.
 | |
|     struct { int_type  n, d, q, r; }
 | |
|      ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
 | |
|      static_cast<int_type>(this->num % this->den) },
 | |
|      rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
 | |
|      static_cast<int_type>(r.num % r.den) };
 | |
|     unsigned  reverse = 0u;
 | |
| 
 | |
|     // Normalize negative moduli by repeatedly adding the (positive) denominator
 | |
|     // and decrementing the quotient.  Later cycles should have all positive
 | |
|     // values, so this only has to be done for the first cycle.  (The rules of
 | |
|     // C++ require a nonnegative quotient & remainder for a nonnegative dividend
 | |
|     // & positive divisor.)
 | |
|     while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
 | |
|     while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
 | |
| 
 | |
|     // Loop through and compare each variable's continued-fraction components
 | |
|     for ( ;; )
 | |
|     {
 | |
|         // The quotients of the current cycle are the continued-fraction
 | |
|         // components.  Comparing two c.f. is comparing their sequences,
 | |
|         // stopping at the first difference.
 | |
|         if ( ts.q != rs.q )
 | |
|         {
 | |
|             // Since reciprocation changes the relative order of two variables,
 | |
|             // and c.f. use reciprocals, the less/greater-than test reverses
 | |
|             // after each index.  (Start w/ non-reversed @ whole-number place.)
 | |
|             return reverse ? ts.q > rs.q : ts.q < rs.q;
 | |
|         }
 | |
| 
 | |
|         // Prepare the next cycle
 | |
|         reverse ^= 1u;
 | |
| 
 | |
|         if ( (ts.r == zero) || (rs.r == zero) )
 | |
|         {
 | |
|             // At least one variable's c.f. expansion has ended
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         ts.n = ts.d;         ts.d = ts.r;
 | |
|         ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
 | |
|         rs.n = rs.d;         rs.d = rs.r;
 | |
|         rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
 | |
|     }
 | |
| 
 | |
|     // Compare infinity-valued components for otherwise equal sequences
 | |
|     if ( ts.r == rs.r )
 | |
|     {
 | |
|         // Both remainders are zero, so the next (and subsequent) c.f.
 | |
|         // components for both sequences are infinity.  Therefore, the sequences
 | |
|         // and their corresponding values are equal.
 | |
|         return false;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4800)
 | |
| #endif
 | |
|         // Exactly one of the remainders is zero, so all following c.f.
 | |
|         // components of that variable are infinity, while the other variable
 | |
|         // has a finite next c.f. component.  So that other variable has the
 | |
|         // lesser value (modulo the reversal flag!).
 | |
|         return ( ts.r != zero ) != static_cast<bool>( reverse );
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| bool rational<IntType>::operator< (param_type i) const
 | |
| {
 | |
|     // Avoid repeated construction
 | |
|     int_type const  zero( 0 );
 | |
| 
 | |
|     // Break value into mixed-fraction form, w/ always-nonnegative remainder
 | |
|     BOOST_ASSERT( this->den > zero );
 | |
|     int_type  q = this->num / this->den, r = this->num % this->den;
 | |
|     while ( r < zero )  { r += this->den; --q; }
 | |
| 
 | |
|     // Compare with just the quotient, since the remainder always bumps the
 | |
|     // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
 | |
|     // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
 | |
|     // q >= i + 1 > i; therefore n/d < i iff q < i.]
 | |
|     return q < i;
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| bool rational<IntType>::operator> (param_type i) const
 | |
| {
 | |
|     return operator==(i)? false: !operator<(i);
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| BOOST_CONSTEXPR
 | |
| inline bool rational<IntType>::operator== (const rational<IntType>& r) const
 | |
| {
 | |
|     return ((num == r.num) && (den == r.den));
 | |
| }
 | |
| 
 | |
| template <typename IntType>
 | |
| BOOST_CONSTEXPR
 | |
| inline bool rational<IntType>::operator== (param_type i) const
 | |
| {
 | |
|     return ((den == IntType(1)) && (num == i));
 | |
| }
 | |
| 
 | |
| // Invariant check
 | |
| template <typename IntType>
 | |
| inline bool rational<IntType>::test_invariant() const
 | |
| {
 | |
|     return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
 | |
|      int_type(1) );
 | |
| }
 | |
| 
 | |
| // Normalisation
 | |
| template <typename IntType>
 | |
| void rational<IntType>::normalize()
 | |
| {
 | |
|     // Avoid repeated construction
 | |
|     IntType zero(0);
 | |
| 
 | |
|     if (den == zero)
 | |
|        BOOST_THROW_EXCEPTION(bad_rational());
 | |
| 
 | |
|     // Handle the case of zero separately, to avoid division by zero
 | |
|     if (num == zero) {
 | |
|         den = IntType(1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     IntType g = integer::gcd(num, den);
 | |
| 
 | |
|     num /= g;
 | |
|     den /= g;
 | |
| 
 | |
|     // Ensure that the denominator is positive
 | |
|     if (den < zero) {
 | |
|         num = -num;
 | |
|         den = -den;
 | |
|     }
 | |
| 
 | |
|     // ...But acknowledge that the previous step doesn't always work.
 | |
|     // (Nominally, this should be done before the mutating steps, but this
 | |
|     // member function is only called during the constructor, so we never have
 | |
|     // to worry about zombie objects.)
 | |
|     if (den < zero)
 | |
|        BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
 | |
| 
 | |
|     BOOST_ASSERT( this->test_invariant() );
 | |
| }
 | |
| 
 | |
| #ifndef BOOST_NO_IOSTREAM
 | |
| namespace detail {
 | |
| 
 | |
|     // A utility class to reset the format flags for an istream at end
 | |
|     // of scope, even in case of exceptions
 | |
|     struct resetter {
 | |
|         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
 | |
|         ~resetter() { is_.flags(f_); }
 | |
|         std::istream& is_;
 | |
|         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
 | |
|     };
 | |
| 
 | |
| }
 | |
| 
 | |
| // Input and output
 | |
| template <typename IntType>
 | |
| std::istream& operator>> (std::istream& is, rational<IntType>& r)
 | |
| {
 | |
|     using std::ios;
 | |
| 
 | |
|     IntType n = IntType(0), d = IntType(1);
 | |
|     char c = 0;
 | |
|     detail::resetter sentry(is);
 | |
| 
 | |
|     if ( is >> n )
 | |
|     {
 | |
|         if ( is.get(c) )
 | |
|         {
 | |
|             if ( c == '/' )
 | |
|             {
 | |
|                 if ( is >> std::noskipws >> d )
 | |
|                     try {
 | |
|                         r.assign( n, d );
 | |
|                     } catch ( bad_rational & ) {        // normalization fail
 | |
|                         try { is.setstate(ios::failbit); }
 | |
|                         catch ( ... ) {}  // don't throw ios_base::failure...
 | |
|                         if ( is.exceptions() & ios::failbit )
 | |
|                             throw;   // ...but the original exception instead
 | |
|                         // ELSE: suppress the exception, use just error flags
 | |
|                     }
 | |
|             }
 | |
|             else
 | |
|                 is.setstate( ios::failbit );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return is;
 | |
| }
 | |
| 
 | |
| // Add manipulators for output format?
 | |
| template <typename IntType>
 | |
| std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
 | |
| {
 | |
|     // The slash directly precedes the denominator, which has no prefixes.
 | |
|     std::ostringstream  ss;
 | |
| 
 | |
|     ss.copyfmt( os );
 | |
|     ss.tie( NULL );
 | |
|     ss.exceptions( std::ios::goodbit );
 | |
|     ss.width( 0 );
 | |
|     ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
 | |
| 
 | |
|     // The numerator holds the showpos, internal, and showbase flags.
 | |
|     std::string const   tail = ss.str();
 | |
|     std::streamsize const  w =
 | |
|         os.width() - static_cast<std::streamsize>( tail.size() );
 | |
| 
 | |
|     ss.clear();
 | |
|     ss.str( "" );
 | |
|     ss.flags( os.flags() );
 | |
|     ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
 | |
|                      std::ios::internal ? 0 : w ) << r.numerator();
 | |
|     return os << ss.str() + tail;
 | |
| }
 | |
| #endif  // BOOST_NO_IOSTREAM
 | |
| 
 | |
| // Type conversion
 | |
| template <typename T, typename IntType>
 | |
| BOOST_CONSTEXPR
 | |
| inline T rational_cast(const rational<IntType>& src)
 | |
| {
 | |
|     return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
 | |
| }
 | |
| 
 | |
| // Do not use any abs() defined on IntType - it isn't worth it, given the
 | |
| // difficulties involved (Koenig lookup required, there may not *be* an abs()
 | |
| // defined, etc etc).
 | |
| template <typename IntType>
 | |
| inline rational<IntType> abs(const rational<IntType>& r)
 | |
| {
 | |
|     return r.numerator() >= IntType(0)? r: -r;
 | |
| }
 | |
| 
 | |
| namespace integer {
 | |
| 
 | |
| template <typename IntType>
 | |
| struct gcd_evaluator< rational<IntType> >
 | |
| {
 | |
|     typedef rational<IntType> result_type,
 | |
|                               first_argument_type, second_argument_type;
 | |
|     result_type operator() (  first_argument_type const &a
 | |
|                            , second_argument_type const &b
 | |
|                            ) const
 | |
|     {
 | |
|         return result_type(integer::gcd(a.numerator(), b.numerator()),
 | |
|                            integer::lcm(a.denominator(), b.denominator()));
 | |
|     }
 | |
| };
 | |
| 
 | |
| template <typename IntType>
 | |
| struct lcm_evaluator< rational<IntType> >
 | |
| {
 | |
|     typedef rational<IntType> result_type,
 | |
|                               first_argument_type, second_argument_type;
 | |
|     result_type operator() (  first_argument_type const &a
 | |
|                            , second_argument_type const &b
 | |
|                            ) const
 | |
|     {
 | |
|         return result_type(integer::lcm(a.numerator(), b.numerator()),
 | |
|                            integer::gcd(a.denominator(), b.denominator()));
 | |
|     }
 | |
| };
 | |
| 
 | |
| } // namespace integer
 | |
| 
 | |
| } // namespace boost
 | |
| 
 | |
| #endif  // BOOST_RATIONAL_HPP
 | 
