528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			528 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright John Maddock 2010.
 | |
| //  Copyright Paul A. Bristow 2010.
 | |
| 
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_STATS_INVERSE_GAUSSIAN_HPP
 | |
| #define BOOST_STATS_INVERSE_GAUSSIAN_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(disable: 4512) // assignment operator could not be generated
 | |
| #endif
 | |
| 
 | |
| // http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution
 | |
| // http://mathworld.wolfram.com/InverseGaussianDistribution.html
 | |
| 
 | |
| // The normal-inverse Gaussian distribution
 | |
| // also called the Wald distribution (some sources limit this to when mean = 1).
 | |
| 
 | |
| // It is the continuous probability distribution
 | |
| // that is defined as the normal variance-mean mixture where the mixing density is the 
 | |
| // inverse Gaussian distribution. The tails of the distribution decrease more slowly
 | |
| // than the normal distribution. It is therefore suitable to model phenomena
 | |
| // where numerically large values are more probable than is the case for the normal distribution.
 | |
| 
 | |
| // The Inverse Gaussian distribution was first studied in relationship to Brownian motion.
 | |
| // In 1956 M.C.K. Tweedie used the name 'Inverse Gaussian' because there is an inverse 
 | |
| // relationship between the time to cover a unit distance and distance covered in unit time.
 | |
| 
 | |
| // Examples are returns from financial assets and turbulent wind speeds. 
 | |
| // The normal-inverse Gaussian distributions form
 | |
| // a subclass of the generalised hyperbolic distributions.
 | |
| 
 | |
| // See also
 | |
| 
 | |
| // http://en.wikipedia.org/wiki/Normal_distribution
 | |
| // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
 | |
| // Also:
 | |
| // Weisstein, Eric W. "Normal Distribution."
 | |
| // From MathWorld--A Wolfram Web Resource.
 | |
| // http://mathworld.wolfram.com/NormalDistribution.html
 | |
| 
 | |
| // http://www.jstatsoft.org/v26/i04/paper General class of inverse Gaussian distributions.
 | |
| // ig package - withdrawn but at http://cran.r-project.org/src/contrib/Archive/ig/
 | |
| 
 | |
| // http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/SuppDists/html/inverse_gaussian.html
 | |
| // R package for dinverse_gaussian, ...
 | |
| 
 | |
| // http://www.statsci.org/s/inverse_gaussian.s  and http://www.statsci.org/s/inverse_gaussian.html
 | |
| 
 | |
| //#include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/special_functions/erf.hpp> // for erf/erfc.
 | |
| #include <boost/math/distributions/complement.hpp>
 | |
| #include <boost/math/distributions/detail/common_error_handling.hpp>
 | |
| #include <boost/math/distributions/normal.hpp>
 | |
| #include <boost/math/distributions/gamma.hpp> // for gamma function
 | |
| // using boost::math::gamma_p;
 | |
| 
 | |
| #include <boost/math/tools/tuple.hpp>
 | |
| //using std::tr1::tuple;
 | |
| //using std::tr1::make_tuple;
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| //using boost::math::tools::newton_raphson_iterate;
 | |
| 
 | |
| #include <utility>
 | |
| 
 | |
| namespace boost{ namespace math{
 | |
| 
 | |
| template <class RealType = double, class Policy = policies::policy<> >
 | |
| class inverse_gaussian_distribution
 | |
| {
 | |
| public:
 | |
|    typedef RealType value_type;
 | |
|    typedef Policy policy_type;
 | |
| 
 | |
|    inverse_gaussian_distribution(RealType l_mean = 1, RealType l_scale = 1)
 | |
|       : m_mean(l_mean), m_scale(l_scale)
 | |
|    { // Default is a 1,1 inverse_gaussian distribution.
 | |
|      static const char* function = "boost::math::inverse_gaussian_distribution<%1%>::inverse_gaussian_distribution";
 | |
| 
 | |
|      RealType result;
 | |
|      detail::check_scale(function, l_scale, &result, Policy());
 | |
|      detail::check_location(function, l_mean, &result, Policy());
 | |
|      detail::check_x_gt0(function, l_mean, &result, Policy());
 | |
|    }
 | |
| 
 | |
|    RealType mean()const
 | |
|    { // alias for location.
 | |
|       return m_mean; // aka mu
 | |
|    }
 | |
| 
 | |
|    // Synonyms, provided to allow generic use of find_location and find_scale.
 | |
|    RealType location()const
 | |
|    { // location, aka mu.
 | |
|       return m_mean;
 | |
|    }
 | |
|    RealType scale()const
 | |
|    { // scale, aka lambda.
 | |
|       return m_scale;
 | |
|    }
 | |
| 
 | |
|    RealType shape()const
 | |
|    { // shape, aka phi = lambda/mu.
 | |
|       return m_scale / m_mean;
 | |
|    }
 | |
| 
 | |
| private:
 | |
|    //
 | |
|    // Data members:
 | |
|    //
 | |
|    RealType m_mean;  // distribution mean or location, aka mu.
 | |
|    RealType m_scale;    // distribution standard deviation or scale, aka lambda.
 | |
| }; // class normal_distribution
 | |
| 
 | |
| typedef inverse_gaussian_distribution<double> inverse_gaussian;
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline const std::pair<RealType, RealType> range(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
 | |
| { // Range of permissible values for random variable x, zero to max.
 | |
|    using boost::math::tools::max_value;
 | |
|    return std::pair<RealType, RealType>(static_cast<RealType>(0.), max_value<RealType>()); // - to + max value.
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline const std::pair<RealType, RealType> support(const inverse_gaussian_distribution<RealType, Policy>& /*dist*/)
 | |
| { // Range of supported values for random variable x, zero to max.
 | |
|   // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
|    using boost::math::tools::max_value;
 | |
|    return std::pair<RealType, RealType>(static_cast<RealType>(0.),  max_value<RealType>()); // - to + max value.
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType pdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
 | |
| { // Probability Density Function
 | |
|    BOOST_MATH_STD_USING  // for ADL of std functions
 | |
| 
 | |
|    RealType scale = dist.scale();
 | |
|    RealType mean = dist.mean();
 | |
|    RealType result = 0;
 | |
|    static const char* function = "boost::math::pdf(const inverse_gaussian_distribution<%1%>&, %1%)";
 | |
|    if(false == detail::check_scale(function, scale, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if(false == detail::check_location(function, mean, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if(false == detail::check_x_gt0(function, mean, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if(false == detail::check_positive_x(function, x, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
| 
 | |
|    if (x == 0)
 | |
|    {
 | |
|      return 0; // Convenient, even if not defined mathematically.
 | |
|    }
 | |
| 
 | |
|    result =
 | |
|      sqrt(scale / (constants::two_pi<RealType>() * x * x * x))
 | |
|     * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean));
 | |
|    return result;
 | |
| } // pdf
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType cdf(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& x)
 | |
| { // Cumulative Density Function.
 | |
|    BOOST_MATH_STD_USING  // for ADL of std functions.
 | |
| 
 | |
|    RealType scale = dist.scale();
 | |
|    RealType mean = dist.mean();
 | |
|    static const char* function = "boost::math::cdf(const inverse_gaussian_distribution<%1%>&, %1%)";
 | |
|    RealType result = 0;
 | |
|    if(false == detail::check_scale(function, scale, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if(false == detail::check_location(function, mean, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if (false == detail::check_x_gt0(function, mean, &result, Policy()))
 | |
|    {
 | |
|       return result;
 | |
|    }
 | |
|    if(false == detail::check_positive_x(function, x, &result, Policy()))
 | |
|    {
 | |
|      return result;
 | |
|    }
 | |
|    if (x == 0)
 | |
|    {
 | |
|      return 0; // Convenient, even if not defined mathematically.
 | |
|    }
 | |
|    // Problem with this formula for large scale > 1000 or small x, 
 | |
|    //result = 0.5 * (erf(sqrt(scale / x) * ((x / mean) - 1) / constants::root_two<RealType>(), Policy()) + 1)
 | |
|    //  + exp(2 * scale / mean) / 2 
 | |
|    //  * (1 - erf(sqrt(scale / x) * (x / mean + 1) / constants::root_two<RealType>(), Policy()));
 | |
|    // so use normal distribution version:
 | |
|    // Wikipedia CDF equation http://en.wikipedia.org/wiki/Inverse_Gaussian_distribution.
 | |
| 
 | |
|    normal_distribution<RealType> n01;
 | |
| 
 | |
|    RealType n0 = sqrt(scale / x);
 | |
|    n0 *= ((x / mean) -1);
 | |
|    RealType n1 = cdf(n01, n0);
 | |
|    RealType expfactor = exp(2 * scale / mean);
 | |
|    RealType n3 = - sqrt(scale / x);
 | |
|    n3 *= (x / mean) + 1;
 | |
|    RealType n4 = cdf(n01, n3);
 | |
|    result = n1 + expfactor * n4;
 | |
|    return result;
 | |
| } // cdf
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| struct inverse_gaussian_quantile_functor
 | |
| { 
 | |
| 
 | |
|   inverse_gaussian_quantile_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
 | |
|     : distribution(dist), prob(p)
 | |
|   {
 | |
|   }
 | |
|   boost::math::tuple<RealType, RealType> operator()(RealType const& x)
 | |
|   {
 | |
|     RealType c = cdf(distribution, x);
 | |
|     RealType fx = c - prob;  // Difference cdf - value - to minimize.
 | |
|     RealType dx = pdf(distribution, x); // pdf is 1st derivative.
 | |
|     // return both function evaluation difference f(x) and 1st derivative f'(x).
 | |
|     return boost::math::make_tuple(fx, dx);
 | |
|   }
 | |
|   private:
 | |
|   const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
 | |
|   RealType prob; 
 | |
| };
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| struct inverse_gaussian_quantile_complement_functor
 | |
| { 
 | |
|     inverse_gaussian_quantile_complement_functor(const boost::math::inverse_gaussian_distribution<RealType, Policy> dist, RealType const& p)
 | |
|     : distribution(dist), prob(p)
 | |
|   {
 | |
|   }
 | |
|   boost::math::tuple<RealType, RealType> operator()(RealType const& x)
 | |
|   {
 | |
|     RealType c = cdf(complement(distribution, x));
 | |
|     RealType fx = c - prob;  // Difference cdf - value - to minimize.
 | |
|     RealType dx = -pdf(distribution, x); // pdf is 1st derivative.
 | |
|     // return both function evaluation difference f(x) and 1st derivative f'(x).
 | |
|     //return std::tr1::make_tuple(fx, dx); if available.
 | |
|     return boost::math::make_tuple(fx, dx);
 | |
|   }
 | |
|   private:
 | |
|   const boost::math::inverse_gaussian_distribution<RealType, Policy> distribution;
 | |
|   RealType prob; 
 | |
| };
 | |
| 
 | |
| namespace detail
 | |
| {
 | |
|   template <class RealType>
 | |
|   inline RealType guess_ig(RealType p, RealType mu = 1, RealType lambda = 1)
 | |
|   { // guess at random variate value x for inverse gaussian quantile.
 | |
|       BOOST_MATH_STD_USING
 | |
|       using boost::math::policies::policy;
 | |
|       // Error type.
 | |
|       using boost::math::policies::overflow_error;
 | |
|       // Action.
 | |
|       using boost::math::policies::ignore_error;
 | |
| 
 | |
|       typedef policy<
 | |
|         overflow_error<ignore_error> // Ignore overflow (return infinity)
 | |
|       > no_overthrow_policy;
 | |
| 
 | |
|     RealType x; // result is guess at random variate value x.
 | |
|     RealType phi = lambda / mu;
 | |
|     if (phi > 2.)
 | |
|     { // Big phi, so starting to look like normal Gaussian distribution.
 | |
|       //    x=(qnorm(p,0,1,true,false) - 0.5 * sqrt(mu/lambda)) / sqrt(lambda/mu);
 | |
|       // Whitmore, G.A. and Yalovsky, M.
 | |
|       // A normalising logarithmic transformation for inverse Gaussian random variables,
 | |
|       // Technometrics 20-2, 207-208 (1978), but using expression from
 | |
|       // V Seshadri, Inverse Gaussian distribution (1998) ISBN 0387 98618 9, page 6.
 | |
|  
 | |
|       normal_distribution<RealType, no_overthrow_policy> n01;
 | |
|       x = mu * exp(quantile(n01, p) / sqrt(phi) - 1/(2 * phi));
 | |
|      }
 | |
|     else
 | |
|     { // phi < 2 so much less symmetrical with long tail,
 | |
|       // so use gamma distribution as an approximation.
 | |
|       using boost::math::gamma_distribution;
 | |
| 
 | |
|       // Define the distribution, using gamma_nooverflow:
 | |
|       typedef gamma_distribution<RealType, no_overthrow_policy> gamma_nooverflow;
 | |
| 
 | |
|       gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
 | |
| 
 | |
|       // gamma_nooverflow g(static_cast<RealType>(0.5), static_cast<RealType>(1.));
 | |
|       // R qgamma(0.2, 0.5, 1)  0.0320923
 | |
|       RealType qg = quantile(complement(g, p));
 | |
|       //RealType qg1 = qgamma(1.- p, 0.5, 1.0, true, false);
 | |
|       x = lambda / (qg * 2);
 | |
|       // 
 | |
|       if (x > mu/2) // x > mu /2?
 | |
|       { // x too large for the gamma approximation to work well.
 | |
|         //x = qgamma(p, 0.5, 1.0); // qgamma(0.270614, 0.5, 1) = 0.05983807
 | |
|         RealType q = quantile(g, p);
 | |
|        // x = mu * exp(q * static_cast<RealType>(0.1));  // Said to improve at high p
 | |
|        // x = mu * x;  // Improves at high p?
 | |
|         x = mu * exp(q / sqrt(phi) - 1/(2 * phi));
 | |
|       }
 | |
|     }
 | |
|     return x;
 | |
|   }  // guess_ig
 | |
| } // namespace detail
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType quantile(const inverse_gaussian_distribution<RealType, Policy>& dist, const RealType& p)
 | |
| {
 | |
|    BOOST_MATH_STD_USING  // for ADL of std functions.
 | |
|    // No closed form exists so guess and use Newton Raphson iteration.
 | |
| 
 | |
|    RealType mean = dist.mean();
 | |
|    RealType scale = dist.scale();
 | |
|    static const char* function = "boost::math::quantile(const inverse_gaussian_distribution<%1%>&, %1%)";
 | |
| 
 | |
|    RealType result = 0;
 | |
|    if(false == detail::check_scale(function, scale, &result, Policy()))
 | |
|       return result;
 | |
|    if(false == detail::check_location(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    if (false == detail::check_x_gt0(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    if(false == detail::check_probability(function, p, &result, Policy()))
 | |
|       return result;
 | |
|    if (p == 0)
 | |
|    {
 | |
|      return 0; // Convenient, even if not defined mathematically?
 | |
|    }
 | |
|    if (p == 1)
 | |
|    { // overflow 
 | |
|       result = policies::raise_overflow_error<RealType>(function,
 | |
|         "probability parameter is 1, but must be < 1!", Policy());
 | |
|       return result; // std::numeric_limits<RealType>::infinity();
 | |
|    }
 | |
| 
 | |
|   RealType guess = detail::guess_ig(p, dist.mean(), dist.scale());
 | |
|   using boost::math::tools::max_value;
 | |
| 
 | |
|   RealType min = 0.; // Minimum possible value is bottom of range of distribution.
 | |
|   RealType max = max_value<RealType>();// Maximum possible value is top of range. 
 | |
|   // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   // To allow user to control accuracy versus speed,
 | |
|   int get_digits = policies::digits<RealType, Policy>();// get digits from policy, 
 | |
|   boost::uintmax_t m = policies::get_max_root_iterations<Policy>(); // and max iterations.
 | |
|   using boost::math::tools::newton_raphson_iterate;
 | |
|   result =
 | |
|     newton_raphson_iterate(inverse_gaussian_quantile_functor<RealType, Policy>(dist, p), guess, min, max, get_digits, m);
 | |
|    return result;
 | |
| } // quantile
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType cdf(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
 | |
| {
 | |
|    BOOST_MATH_STD_USING  // for ADL of std functions.
 | |
| 
 | |
|    RealType scale = c.dist.scale();
 | |
|    RealType mean = c.dist.mean();
 | |
|    RealType x = c.param;
 | |
|    static const char* function = "boost::math::cdf(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
 | |
|    // infinite arguments not supported.
 | |
|    //if((boost::math::isinf)(x))
 | |
|    //{
 | |
|    //  if(x < 0) return 1; // cdf complement -infinity is unity.
 | |
|    //  return 0; // cdf complement +infinity is zero
 | |
|    //}
 | |
|    // These produce MSVC 4127 warnings, so the above used instead.
 | |
|    //if(std::numeric_limits<RealType>::has_infinity && x == std::numeric_limits<RealType>::infinity())
 | |
|    //{ // cdf complement +infinity is zero.
 | |
|    //  return 0;
 | |
|    //}
 | |
|    //if(std::numeric_limits<RealType>::has_infinity && x == -std::numeric_limits<RealType>::infinity())
 | |
|    //{ // cdf complement -infinity is unity.
 | |
|    //  return 1;
 | |
|    //}
 | |
|    RealType result = 0;
 | |
|    if(false == detail::check_scale(function, scale, &result, Policy()))
 | |
|       return result;
 | |
|    if(false == detail::check_location(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    if (false == detail::check_x_gt0(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    if(false == detail::check_positive_x(function, x, &result, Policy()))
 | |
|       return result;
 | |
| 
 | |
|    normal_distribution<RealType> n01;
 | |
|    RealType n0 = sqrt(scale / x);
 | |
|    n0 *= ((x / mean) -1);
 | |
|    RealType cdf_1 = cdf(complement(n01, n0));
 | |
| 
 | |
|    RealType expfactor = exp(2 * scale / mean);
 | |
|    RealType n3 = - sqrt(scale / x);
 | |
|    n3 *= (x / mean) + 1;
 | |
| 
 | |
|    //RealType n5 = +sqrt(scale/x) * ((x /mean) + 1); // note now positive sign.
 | |
|    RealType n6 = cdf(complement(n01, +sqrt(scale/x) * ((x /mean) + 1)));
 | |
|    // RealType n4 = cdf(n01, n3); // = 
 | |
|    result = cdf_1 - expfactor * n6; 
 | |
|    return result;
 | |
| } // cdf complement
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType quantile(const complemented2_type<inverse_gaussian_distribution<RealType, Policy>, RealType>& c)
 | |
| {
 | |
|    BOOST_MATH_STD_USING  // for ADL of std functions
 | |
| 
 | |
|    RealType scale = c.dist.scale();
 | |
|    RealType mean = c.dist.mean();
 | |
|    static const char* function = "boost::math::quantile(const complement(inverse_gaussian_distribution<%1%>&), %1%)";
 | |
|    RealType result = 0;
 | |
|    if(false == detail::check_scale(function, scale, &result, Policy()))
 | |
|       return result;
 | |
|    if(false == detail::check_location(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    if (false == detail::check_x_gt0(function, mean, &result, Policy()))
 | |
|       return result;
 | |
|    RealType q = c.param;
 | |
|    if(false == detail::check_probability(function, q, &result, Policy()))
 | |
|       return result;
 | |
| 
 | |
|    RealType guess = detail::guess_ig(q, mean, scale);
 | |
|    // Complement.
 | |
|    using boost::math::tools::max_value;
 | |
| 
 | |
|   RealType min = 0.; // Minimum possible value is bottom of range of distribution.
 | |
|   RealType max = max_value<RealType>();// Maximum possible value is top of range. 
 | |
|   // int digits = std::numeric_limits<RealType>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   // digits used to control how accurate to try to make the result.
 | |
|   int get_digits = policies::digits<RealType, Policy>();
 | |
|   boost::uintmax_t m = policies::get_max_root_iterations<Policy>();
 | |
|   using boost::math::tools::newton_raphson_iterate;
 | |
|   result =
 | |
|     newton_raphson_iterate(inverse_gaussian_quantile_complement_functor<RealType, Policy>(c.dist, q), guess, min, max, get_digits, m);
 | |
|    return result;
 | |
| } // quantile
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType mean(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| { // aka mu
 | |
|    return dist.mean();
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType scale(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| { // aka lambda
 | |
|    return dist.scale();
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType shape(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| { // aka phi
 | |
|    return dist.shape();
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType standard_deviation(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| {
 | |
|   BOOST_MATH_STD_USING
 | |
|   RealType scale = dist.scale();
 | |
|   RealType mean = dist.mean();
 | |
|   RealType result = sqrt(mean * mean * mean / scale);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType mode(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| {
 | |
|   BOOST_MATH_STD_USING
 | |
|   RealType scale = dist.scale();
 | |
|   RealType  mean = dist.mean();
 | |
|   RealType result = mean * (sqrt(1 + (9 * mean * mean)/(4 * scale * scale)) 
 | |
|       - 3 * mean / (2 * scale));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType skewness(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| {
 | |
|   BOOST_MATH_STD_USING
 | |
|   RealType scale = dist.scale();
 | |
|   RealType  mean = dist.mean();
 | |
|   RealType result = 3 * sqrt(mean/scale);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType kurtosis(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| {
 | |
|   RealType scale = dist.scale();
 | |
|   RealType  mean = dist.mean();
 | |
|   RealType result = 15 * mean / scale -3;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <class RealType, class Policy>
 | |
| inline RealType kurtosis_excess(const inverse_gaussian_distribution<RealType, Policy>& dist)
 | |
| {
 | |
|   RealType scale = dist.scale();
 | |
|   RealType  mean = dist.mean();
 | |
|   RealType result = 15 * mean / scale;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| 
 | |
| #endif // BOOST_STATS_INVERSE_GAUSSIAN_HPP
 | |
| 
 | |
| 
 | 
