572 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			572 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright John Maddock 2007.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
 | |
| #define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace boost{ namespace math{ namespace detail{
 | |
| 
 | |
| //
 | |
| // Functor for root finding algorithm:
 | |
| //
 | |
| template <class Dist>
 | |
| struct distribution_quantile_finder
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    typedef typename Dist::policy_type policy_type;
 | |
| 
 | |
|    distribution_quantile_finder(const Dist d, value_type p, bool c)
 | |
|       : dist(d), target(p), comp(c) {}
 | |
| 
 | |
|    value_type operator()(value_type const& x)
 | |
|    {
 | |
|       return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
 | |
|    }
 | |
| 
 | |
| private:
 | |
|    Dist dist;
 | |
|    value_type target;
 | |
|    bool comp;
 | |
| };
 | |
| //
 | |
| // The purpose of adjust_bounds, is to toggle the last bit of the
 | |
| // range so that both ends round to the same integer, if possible.
 | |
| // If they do both round the same then we terminate the search
 | |
| // for the root *very* quickly when finding an integer result.
 | |
| // At the point that this function is called we know that "a" is
 | |
| // below the root and "b" above it, so this change can not result
 | |
| // in the root no longer being bracketed.
 | |
| //
 | |
| template <class Real, class Tol>
 | |
| void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
 | |
| 
 | |
| template <class Real>
 | |
| void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    b -= tools::epsilon<Real>() * b;
 | |
| }
 | |
| 
 | |
| template <class Real>
 | |
| void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    a += tools::epsilon<Real>() * a;
 | |
| }
 | |
| 
 | |
| template <class Real>
 | |
| void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    a += tools::epsilon<Real>() * a;
 | |
|    b -= tools::epsilon<Real>() * b;
 | |
| }
 | |
| //
 | |
| // This is where all the work is done:
 | |
| //
 | |
| template <class Dist, class Tolerance>
 | |
| typename Dist::value_type 
 | |
|    do_inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool comp,
 | |
|       typename Dist::value_type guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       typename Dist::value_type adder,
 | |
|       const Tolerance& tol,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    typedef typename Dist::policy_type policy_type;
 | |
| 
 | |
|    static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
 | |
| 
 | |
|    BOOST_MATH_STD_USING
 | |
| 
 | |
|    distribution_quantile_finder<Dist> f(dist, p, comp);
 | |
|    //
 | |
|    // Max bounds of the distribution:
 | |
|    //
 | |
|    value_type min_bound, max_bound;
 | |
|    boost::math::tie(min_bound, max_bound) = support(dist);
 | |
| 
 | |
|    if(guess > max_bound)
 | |
|       guess = max_bound;
 | |
|    if(guess < min_bound)
 | |
|       guess = min_bound;
 | |
| 
 | |
|    value_type fa = f(guess);
 | |
|    boost::uintmax_t count = max_iter - 1;
 | |
|    value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
 | |
| 
 | |
|    if(fa == 0)
 | |
|       return guess;
 | |
| 
 | |
|    //
 | |
|    // For small expected results, just use a linear search:
 | |
|    //
 | |
|    if(guess < 10)
 | |
|    {
 | |
|       b = a;
 | |
|       while((a < 10) && (fa * fb >= 0))
 | |
|       {
 | |
|          if(fb <= 0)
 | |
|          {
 | |
|             a = b;
 | |
|             b = a + 1;
 | |
|             if(b > max_bound)
 | |
|                b = max_bound;
 | |
|             fb = f(b);
 | |
|             --count;
 | |
|             if(fb == 0)
 | |
|                return b;
 | |
|             if(a == b)
 | |
|                return b; // can't go any higher!
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             b = a;
 | |
|             a = (std::max)(value_type(b - 1), value_type(0));
 | |
|             if(a < min_bound)
 | |
|                a = min_bound;
 | |
|             fa = f(a);
 | |
|             --count;
 | |
|             if(fa == 0)
 | |
|                return a;
 | |
|             if(a == b)
 | |
|                return a;  //  We can't go any lower than this!
 | |
|          }
 | |
|       }
 | |
|    }
 | |
|    //
 | |
|    // Try and bracket using a couple of additions first, 
 | |
|    // we're assuming that "guess" is likely to be accurate
 | |
|    // to the nearest int or so:
 | |
|    //
 | |
|    else if(adder != 0)
 | |
|    {
 | |
|       //
 | |
|       // If we're looking for a large result, then bump "adder" up
 | |
|       // by a bit to increase our chances of bracketing the root:
 | |
|       //
 | |
|       //adder = (std::max)(adder, 0.001f * guess);
 | |
|       if(fa < 0)
 | |
|       {
 | |
|          b = a + adder;
 | |
|          if(b > max_bound)
 | |
|             b = max_bound;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          b = (std::max)(value_type(a - adder), value_type(0));
 | |
|          if(b < min_bound)
 | |
|             b = min_bound;
 | |
|       }
 | |
|       fb = f(b);
 | |
|       --count;
 | |
|       if(fb == 0)
 | |
|          return b;
 | |
|       if(count && (fa * fb >= 0))
 | |
|       {
 | |
|          //
 | |
|          // We didn't bracket the root, try 
 | |
|          // once more:
 | |
|          //
 | |
|          a = b;
 | |
|          fa = fb;
 | |
|          if(fa < 0)
 | |
|          {
 | |
|             b = a + adder;
 | |
|             if(b > max_bound)
 | |
|                b = max_bound;
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             b = (std::max)(value_type(a - adder), value_type(0));
 | |
|             if(b < min_bound)
 | |
|                b = min_bound;
 | |
|          }
 | |
|          fb = f(b);
 | |
|          --count;
 | |
|       }
 | |
|       if(a > b)
 | |
|       {
 | |
|          using std::swap;
 | |
|          swap(a, b);
 | |
|          swap(fa, fb);
 | |
|       }
 | |
|    }
 | |
|    //
 | |
|    // If the root hasn't been bracketed yet, try again
 | |
|    // using the multiplier this time:
 | |
|    //
 | |
|    if((boost::math::sign)(fb) == (boost::math::sign)(fa))
 | |
|    {
 | |
|       if(fa < 0)
 | |
|       {
 | |
|          //
 | |
|          // Zero is to the right of x2, so walk upwards
 | |
|          // until we find it:
 | |
|          //
 | |
|          while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
 | |
|          {
 | |
|             if(count == 0)
 | |
|                return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type());
 | |
|             a = b;
 | |
|             fa = fb;
 | |
|             b *= multiplier;
 | |
|             if(b > max_bound)
 | |
|                b = max_bound;
 | |
|             fb = f(b);
 | |
|             --count;
 | |
|             BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | |
|          }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          //
 | |
|          // Zero is to the left of a, so walk downwards
 | |
|          // until we find it:
 | |
|          //
 | |
|          while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
 | |
|          {
 | |
|             if(fabs(a) < tools::min_value<value_type>())
 | |
|             {
 | |
|                // Escape route just in case the answer is zero!
 | |
|                max_iter -= count;
 | |
|                max_iter += 1;
 | |
|                return 0;
 | |
|             }
 | |
|             if(count == 0)
 | |
|                return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type());
 | |
|             b = a;
 | |
|             fb = fa;
 | |
|             a /= multiplier;
 | |
|             if(a < min_bound)
 | |
|                a = min_bound;
 | |
|             fa = f(a);
 | |
|             --count;
 | |
|             BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
 | |
|          }
 | |
|       }
 | |
|    }
 | |
|    max_iter -= count;
 | |
|    if(fa == 0)
 | |
|       return a;
 | |
|    if(fb == 0)
 | |
|       return b;
 | |
|    if(a == b)
 | |
|       return b;  // Ran out of bounds trying to bracket - there is no answer!
 | |
|    //
 | |
|    // Adjust bounds so that if we're looking for an integer
 | |
|    // result, then both ends round the same way:
 | |
|    //
 | |
|    adjust_bounds(a, b, tol);
 | |
|    //
 | |
|    // We don't want zero or denorm lower bounds:
 | |
|    //
 | |
|    if(a < tools::min_value<value_type>())
 | |
|       a = tools::min_value<value_type>();
 | |
|    //
 | |
|    // Go ahead and find the root:
 | |
|    //
 | |
|    std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
 | |
|    max_iter += count;
 | |
|    BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
 | |
|    return (r.first + r.second) / 2;
 | |
| }
 | |
| //
 | |
| // Some special routine for rounding up and down:
 | |
| // We want to check and see if we are very close to an integer, and if so test to see if
 | |
| // that integer is an exact root of the cdf.  We do this because our root finder only
 | |
| // guarantees to find *a root*, and there can sometimes be many consecutive floating
 | |
| // point values which are all roots.  This is especially true if the target probability
 | |
| // is very close 1.
 | |
| //
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type cc = ceil(result);
 | |
|    typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
 | |
|    if(pp == p)
 | |
|       result = cc;
 | |
|    else
 | |
|       result = floor(result);
 | |
|    //
 | |
|    // Now find the smallest integer <= result for which we get an exact root:
 | |
|    //
 | |
|    while(result != 0)
 | |
|    {
 | |
|       cc = result - 1;
 | |
|       if(cc < support(d).first)
 | |
|          break;
 | |
|       pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
 | |
|       if(pp == p)
 | |
|          result = cc;
 | |
|       else if(c ? pp > p : pp < p)
 | |
|          break;
 | |
|       result -= 1;
 | |
|    }
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4127)
 | |
| #endif
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type cc = floor(result);
 | |
|    typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
 | |
|    if(pp == p)
 | |
|       result = cc;
 | |
|    else
 | |
|       result = ceil(result);
 | |
|    //
 | |
|    // Now find the largest integer >= result for which we get an exact root:
 | |
|    //
 | |
|    while(true)
 | |
|    {
 | |
|       cc = result + 1;
 | |
|       if(cc > support(d).second)
 | |
|          break;
 | |
|       pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
 | |
|       if(pp == p)
 | |
|          result = cc;
 | |
|       else if(c ? pp < p : pp > p)
 | |
|          break;
 | |
|       result += 1;
 | |
|    }
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| //
 | |
| // Now finally are the public API functions.
 | |
| // There is one overload for each policy,
 | |
| // each one is responsible for selecting the correct
 | |
| // termination condition, and rounding the result
 | |
| // to an int where required.
 | |
| //
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       typename Dist::value_type p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::real>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    if(p > 0.5)
 | |
|    {
 | |
|       p = 1 - p;
 | |
|       c = !c;
 | |
|    }
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    return do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       guess, 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
 | |
|       max_iter);
 | |
| }
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::integer_round_outwards>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    //
 | |
|    // What happens next depends on whether we're looking for an 
 | |
|    // upper or lower quantile:
 | |
|    //
 | |
|    if(pp < 0.5f)
 | |
|       return round_to_floor(dist, do_inverse_discrete_quantile(
 | |
|          dist, 
 | |
|          p, 
 | |
|          c,
 | |
|          (guess < 1 ? value_type(1) : (value_type)floor(guess)), 
 | |
|          multiplier, 
 | |
|          adder, 
 | |
|          tools::equal_floor(),
 | |
|          max_iter), p, c);
 | |
|    // else:
 | |
|    return round_to_ceil(dist, do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       (value_type)ceil(guess), 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::equal_ceil(),
 | |
|       max_iter), p, c);
 | |
| }
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::integer_round_inwards>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    //
 | |
|    // What happens next depends on whether we're looking for an 
 | |
|    // upper or lower quantile:
 | |
|    //
 | |
|    if(pp < 0.5f)
 | |
|       return round_to_ceil(dist, do_inverse_discrete_quantile(
 | |
|          dist, 
 | |
|          p, 
 | |
|          c,
 | |
|          ceil(guess), 
 | |
|          multiplier, 
 | |
|          adder, 
 | |
|          tools::equal_ceil(),
 | |
|          max_iter), p, c);
 | |
|    // else:
 | |
|    return round_to_floor(dist, do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       (guess < 1 ? value_type(1) : floor(guess)), 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::equal_floor(),
 | |
|       max_iter), p, c);
 | |
| }
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::integer_round_down>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    return round_to_floor(dist, do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       (guess < 1 ? value_type(1) : floor(guess)), 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::equal_floor(),
 | |
|       max_iter), p, c);
 | |
| }
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::integer_round_up>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    return round_to_ceil(dist, do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       ceil(guess), 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::equal_ceil(),
 | |
|       max_iter), p, c);
 | |
| }
 | |
| 
 | |
| template <class Dist>
 | |
| inline typename Dist::value_type 
 | |
|    inverse_discrete_quantile(
 | |
|       const Dist& dist,
 | |
|       const typename Dist::value_type& p,
 | |
|       bool c,
 | |
|       const typename Dist::value_type& guess,
 | |
|       const typename Dist::value_type& multiplier,
 | |
|       const typename Dist::value_type& adder,
 | |
|       const policies::discrete_quantile<policies::integer_round_nearest>&,
 | |
|       boost::uintmax_t& max_iter)
 | |
| {
 | |
|    typedef typename Dist::value_type value_type;
 | |
|    BOOST_MATH_STD_USING
 | |
|    typename Dist::value_type pp = c ? 1 - p : p;
 | |
|    if(pp <= pdf(dist, 0))
 | |
|       return 0;
 | |
|    //
 | |
|    // Note that we adjust the guess to the nearest half-integer:
 | |
|    // this increase the chances that we will bracket the root
 | |
|    // with two results that both round to the same integer quickly.
 | |
|    //
 | |
|    return round_to_floor(dist, do_inverse_discrete_quantile(
 | |
|       dist, 
 | |
|       p, 
 | |
|       c,
 | |
|       (guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f), 
 | |
|       multiplier, 
 | |
|       adder, 
 | |
|       tools::equal_nearest_integer(),
 | |
|       max_iter) + 0.5f, p, c);
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
 | |
| 
 | 
