217 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| /* boost random/detail/const_mod.hpp header file
 | |
|  *
 | |
|  * Copyright Jens Maurer 2000-2001
 | |
|  * Distributed under the Boost Software License, Version 1.0. (See
 | |
|  * accompanying file LICENSE_1_0.txt or copy at
 | |
|  * http://www.boost.org/LICENSE_1_0.txt)
 | |
|  *
 | |
|  * See http://www.boost.org for most recent version including documentation.
 | |
|  *
 | |
|  * $Id$
 | |
|  *
 | |
|  * Revision history
 | |
|  *  2001-02-18  moved to individual header files
 | |
|  */
 | |
| 
 | |
| #ifndef BOOST_RANDOM_CONST_MOD_HPP
 | |
| #define BOOST_RANDOM_CONST_MOD_HPP
 | |
| 
 | |
| #include <boost/assert.hpp>
 | |
| #include <boost/static_assert.hpp>
 | |
| #include <boost/integer_traits.hpp>
 | |
| #include <boost/type_traits/make_unsigned.hpp>
 | |
| #include <boost/random/detail/large_arithmetic.hpp>
 | |
| 
 | |
| #include <boost/random/detail/disable_warnings.hpp>
 | |
| 
 | |
| namespace boost {
 | |
| namespace random {
 | |
| 
 | |
| template<class IntType, IntType m>
 | |
| class const_mod
 | |
| {
 | |
| public:
 | |
|   static IntType apply(IntType x)
 | |
|   {
 | |
|     if(((unsigned_m() - 1) & unsigned_m()) == 0)
 | |
|       return (unsigned_type(x)) & (unsigned_m() - 1);
 | |
|     else {
 | |
|       IntType suppress_warnings = (m == 0);
 | |
|       BOOST_ASSERT(suppress_warnings == 0);
 | |
|       return x % (m + suppress_warnings);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static IntType add(IntType x, IntType c)
 | |
|   {
 | |
|     if(((unsigned_m() - 1) & unsigned_m()) == 0)
 | |
|       return (unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);
 | |
|     else if(c == 0)
 | |
|       return x;
 | |
|     else if(x < m - c)
 | |
|       return x + c;
 | |
|     else
 | |
|       return x - (m - c);
 | |
|   }
 | |
| 
 | |
|   static IntType mult(IntType a, IntType x)
 | |
|   {
 | |
|     if(((unsigned_m() - 1) & unsigned_m()) == 0)
 | |
|       return unsigned_type(a) * unsigned_type(x) & (unsigned_m() - 1);
 | |
|     else if(a == 0)
 | |
|       return 0;
 | |
|     else if(a == 1)
 | |
|       return x;
 | |
|     else if(m <= traits::const_max/a)      // i.e. a*m <= max
 | |
|       return mult_small(a, x);
 | |
|     else if(traits::is_signed && (m%a < m/a))
 | |
|       return mult_schrage(a, x);
 | |
|     else
 | |
|       return mult_general(a, x);
 | |
|   }
 | |
| 
 | |
|   static IntType mult_add(IntType a, IntType x, IntType c)
 | |
|   {
 | |
|     if(((unsigned_m() - 1) & unsigned_m()) == 0)
 | |
|       return (unsigned_type(a) * unsigned_type(x) + unsigned_type(c)) & (unsigned_m() - 1);
 | |
|     else if(a == 0)
 | |
|       return c;
 | |
|     else if(m <= (traits::const_max-c)/a) {  // i.e. a*m+c <= max
 | |
|       IntType suppress_warnings = (m == 0);
 | |
|       BOOST_ASSERT(suppress_warnings == 0);
 | |
|       return (a*x+c) % (m + suppress_warnings);
 | |
|     } else
 | |
|       return add(mult(a, x), c);
 | |
|   }
 | |
| 
 | |
|   static IntType pow(IntType a, boost::uintmax_t exponent)
 | |
|   {
 | |
|       IntType result = 1;
 | |
|       while(exponent != 0) {
 | |
|           if(exponent % 2 == 1) {
 | |
|               result = mult(result, a);
 | |
|           }
 | |
|           a = mult(a, a);
 | |
|           exponent /= 2;
 | |
|       }
 | |
|       return result;
 | |
|   }
 | |
| 
 | |
|   static IntType invert(IntType x)
 | |
|   { return x == 0 ? 0 : (m == 0? invert_euclidian0(x) : invert_euclidian(x)); }
 | |
| 
 | |
| private:
 | |
|   typedef integer_traits<IntType> traits;
 | |
|   typedef typename make_unsigned<IntType>::type unsigned_type;
 | |
| 
 | |
|   const_mod();      // don't instantiate
 | |
| 
 | |
|   static IntType mult_small(IntType a, IntType x)
 | |
|   {
 | |
|     IntType suppress_warnings = (m == 0);
 | |
|     BOOST_ASSERT(suppress_warnings == 0);
 | |
|     return a*x % (m + suppress_warnings);
 | |
|   }
 | |
| 
 | |
|   static IntType mult_schrage(IntType a, IntType value)
 | |
|   {
 | |
|     const IntType q = m / a;
 | |
|     const IntType r = m % a;
 | |
| 
 | |
|     BOOST_ASSERT(r < q);        // check that overflow cannot happen
 | |
| 
 | |
|     return sub(a*(value%q), r*(value/q));
 | |
|   }
 | |
| 
 | |
|   static IntType mult_general(IntType a, IntType b)
 | |
|   {
 | |
|     IntType suppress_warnings = (m == 0);
 | |
|     BOOST_ASSERT(suppress_warnings == 0);
 | |
|     IntType modulus = m + suppress_warnings;
 | |
|     BOOST_ASSERT(modulus == m);
 | |
|     if(::boost::uintmax_t(modulus) <=
 | |
|         (::std::numeric_limits< ::boost::uintmax_t>::max)() / modulus)
 | |
|     {
 | |
|       return static_cast<IntType>(boost::uintmax_t(a) * b % modulus);
 | |
|     } else {
 | |
|       return static_cast<IntType>(detail::mulmod(a, b, modulus));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static IntType sub(IntType a, IntType b)
 | |
|   {
 | |
|     if(a < b)
 | |
|       return m - (b - a);
 | |
|     else
 | |
|       return a - b;
 | |
|   }
 | |
| 
 | |
|   static unsigned_type unsigned_m()
 | |
|   {
 | |
|       if(m == 0) {
 | |
|           return unsigned_type((std::numeric_limits<IntType>::max)()) + 1;
 | |
|       } else {
 | |
|           return unsigned_type(m);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // invert c in the finite field (mod m) (m must be prime)
 | |
|   static IntType invert_euclidian(IntType c)
 | |
|   {
 | |
|     // we are interested in the gcd factor for c, because this is our inverse
 | |
|     BOOST_ASSERT(c > 0);
 | |
|     IntType l1 = 0;
 | |
|     IntType l2 = 1;
 | |
|     IntType n = c;
 | |
|     IntType p = m;
 | |
|     for(;;) {
 | |
|       IntType q = p / n;
 | |
|       l1 += q * l2;
 | |
|       p -= q * n;
 | |
|       if(p == 0)
 | |
|         return l2;
 | |
|       IntType q2 = n / p;
 | |
|       l2 += q2 * l1;
 | |
|       n -= q2 * p;
 | |
|       if(n == 0)
 | |
|         return m - l1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // invert c in the finite field (mod m) (c must be relatively prime to m)
 | |
|   static IntType invert_euclidian0(IntType c)
 | |
|   {
 | |
|     // we are interested in the gcd factor for c, because this is our inverse
 | |
|     BOOST_ASSERT(c > 0);
 | |
|     if(c == 1) return 1;
 | |
|     IntType l1 = 0;
 | |
|     IntType l2 = 1;
 | |
|     IntType n = c;
 | |
|     IntType p = m;
 | |
|     IntType max = (std::numeric_limits<IntType>::max)();
 | |
|     IntType q = max / n;
 | |
|     BOOST_ASSERT(max % n != n - 1 && "c must be relatively prime to m.");
 | |
|     l1 += q * l2;
 | |
|     p = max - q * n + 1;
 | |
|     for(;;) {
 | |
|       if(p == 0)
 | |
|         return l2;
 | |
|       IntType q2 = n / p;
 | |
|       l2 += q2 * l1;
 | |
|       n -= q2 * p;
 | |
|       if(n == 0)
 | |
|         return m - l1;
 | |
|       q = p / n;
 | |
|       l1 += q * l2;
 | |
|       p -= q * n;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace random
 | |
| } // namespace boost
 | |
| 
 | |
| #include <boost/random/detail/enable_warnings.hpp>
 | |
| 
 | |
| #endif // BOOST_RANDOM_CONST_MOD_HPP
 | 
