955 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			955 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright John Maddock 2008.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| // Wrapper that works with mpfr_class defined in gmpfrxx.h
 | |
| // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
 | |
| // Also requires the gmp and mpfr libraries.
 | |
| //
 | |
| 
 | |
| #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
 | |
| #define BOOST_MATH_MPLFR_BINDINGS_HPP
 | |
| 
 | |
| #include <boost/config.hpp>
 | |
| #include <boost/lexical_cast.hpp>
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| //
 | |
| // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers, 
 | |
| // disable them here, so we only see warnings from *our* code:
 | |
| //
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable: 4127 4800 4512)
 | |
| #endif
 | |
| 
 | |
| #include <gmpfrxx.h>
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/tools/precision.hpp>
 | |
| #include <boost/math/tools/real_cast.hpp>
 | |
| #include <boost/math/policies/policy.hpp>
 | |
| #include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/bindings/detail/big_digamma.hpp>
 | |
| #include <boost/math/bindings/detail/big_lanczos.hpp>
 | |
| #include <boost/math/tools/big_constant.hpp>
 | |
| 
 | |
| inline mpfr_class fabs(const mpfr_class& v)
 | |
| {
 | |
|    return abs(v);
 | |
| }
 | |
| template <class T, class U>
 | |
| inline mpfr_class fabs(const __gmp_expr<T,U>& v)
 | |
| {
 | |
|    return abs(static_cast<mpfr_class>(v));
 | |
| }
 | |
| 
 | |
| inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
 | |
| {
 | |
|    mpfr_class result;
 | |
|    mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
 | |
|    return result;
 | |
| }
 | |
| /*
 | |
| template <class T, class U, class V, class W>
 | |
| inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
 | |
| {
 | |
|    return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
 | |
| }
 | |
| */
 | |
| inline mpfr_class ldexp(const mpfr_class& v, int e)
 | |
| {
 | |
|    //int e = mpfr_get_exp(*v.__get_mp());
 | |
|    mpfr_class result(v);
 | |
|    mpfr_set_exp(result.__get_mp(), e);
 | |
|    return result;
 | |
| }
 | |
| template <class T, class U>
 | |
| inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
 | |
| {
 | |
|    return ldexp(static_cast<mpfr_class>(v), e);
 | |
| }
 | |
| 
 | |
| inline mpfr_class frexp(const mpfr_class& v, int* expon)
 | |
| {
 | |
|    int e = mpfr_get_exp(v.__get_mp());
 | |
|    mpfr_class result(v);
 | |
|    mpfr_set_exp(result.__get_mp(), 0);
 | |
|    *expon = e;
 | |
|    return result;
 | |
| }
 | |
| template <class T, class U>
 | |
| inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
 | |
| {
 | |
|    return frexp(static_cast<mpfr_class>(v), expon);
 | |
| }
 | |
| 
 | |
| inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
 | |
| {
 | |
|    mpfr_class n;
 | |
|    if(v1 < 0)
 | |
|       n = ceil(v1 / v2);
 | |
|    else
 | |
|       n = floor(v1 / v2);
 | |
|    return v1 - n * v2;
 | |
| }
 | |
| template <class T, class U, class V, class W>
 | |
| inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
 | |
| {
 | |
|    return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
 | |
| {
 | |
|    *ipart = lltrunc(v, pol);
 | |
|    return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
 | |
| {
 | |
|    return modf(static_cast<mpfr_class>(v), ipart, pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline int iround(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return iround(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline long lround(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return lround(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline long long llround(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return llround(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline int itrunc(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return itrunc(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline long ltrunc(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return ltrunc(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline long long lltrunc(mpfr_class const& x, const Policy&)
 | |
| {
 | |
|    return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
 | |
| }
 | |
| template <class T, class U, class Policy>
 | |
| inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
 | |
| {
 | |
|    return lltrunc(static_cast<mpfr_class>(x), pol);
 | |
| }
 | |
| 
 | |
| namespace boost{ 
 | |
| 
 | |
| #ifdef BOOST_MATH_USE_FLOAT128
 | |
|    template<> struct is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public boost::integral_constant<bool, false>{};
 | |
| #endif
 | |
|    template<> struct is_convertible<long long, mpfr_class> : public boost::integral_constant<bool, false>{};
 | |
| 
 | |
| namespace math{
 | |
| 
 | |
| #if defined(__GNUC__) && (__GNUC__ < 4)
 | |
|    using ::iround;
 | |
|    using ::lround;
 | |
|    using ::llround;
 | |
|    using ::itrunc;
 | |
|    using ::ltrunc;
 | |
|    using ::lltrunc;
 | |
|    using ::modf;
 | |
| #endif
 | |
| 
 | |
| namespace lanczos{
 | |
| 
 | |
| struct mpfr_lanczos
 | |
| {
 | |
|    static mpfr_class lanczos_sum(const mpfr_class& z)
 | |
|    {
 | |
|       unsigned long p = z.get_dprec();
 | |
|       if(p <= 72)
 | |
|          return lanczos13UDT::lanczos_sum(z);
 | |
|       else if(p <= 120)
 | |
|          return lanczos22UDT::lanczos_sum(z);
 | |
|       else if(p <= 170)
 | |
|          return lanczos31UDT::lanczos_sum(z);
 | |
|       else //if(p <= 370) approx 100 digit precision:
 | |
|          return lanczos61UDT::lanczos_sum(z);
 | |
|    }
 | |
|    static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
 | |
|    {
 | |
|       unsigned long p = z.get_dprec();
 | |
|       if(p <= 72)
 | |
|          return lanczos13UDT::lanczos_sum_expG_scaled(z);
 | |
|       else if(p <= 120)
 | |
|          return lanczos22UDT::lanczos_sum_expG_scaled(z);
 | |
|       else if(p <= 170)
 | |
|          return lanczos31UDT::lanczos_sum_expG_scaled(z);
 | |
|       else //if(p <= 370) approx 100 digit precision:
 | |
|          return lanczos61UDT::lanczos_sum_expG_scaled(z);
 | |
|    }
 | |
|    static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
 | |
|    {
 | |
|       unsigned long p = z.get_dprec();
 | |
|       if(p <= 72)
 | |
|          return lanczos13UDT::lanczos_sum_near_1(z);
 | |
|       else if(p <= 120)
 | |
|          return lanczos22UDT::lanczos_sum_near_1(z);
 | |
|       else if(p <= 170)
 | |
|          return lanczos31UDT::lanczos_sum_near_1(z);
 | |
|       else //if(p <= 370) approx 100 digit precision:
 | |
|          return lanczos61UDT::lanczos_sum_near_1(z);
 | |
|    }
 | |
|    static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
 | |
|    {
 | |
|       unsigned long p = z.get_dprec();
 | |
|       if(p <= 72)
 | |
|          return lanczos13UDT::lanczos_sum_near_2(z);
 | |
|       else if(p <= 120)
 | |
|          return lanczos22UDT::lanczos_sum_near_2(z);
 | |
|       else if(p <= 170)
 | |
|          return lanczos31UDT::lanczos_sum_near_2(z);
 | |
|       else //if(p <= 370) approx 100 digit precision:
 | |
|          return lanczos61UDT::lanczos_sum_near_2(z);
 | |
|    }
 | |
|    static mpfr_class g()
 | |
|    { 
 | |
|       unsigned long p = mpfr_class::get_dprec();
 | |
|       if(p <= 72)
 | |
|          return lanczos13UDT::g();
 | |
|       else if(p <= 120)
 | |
|          return lanczos22UDT::g();
 | |
|       else if(p <= 170)
 | |
|          return lanczos31UDT::g();
 | |
|       else //if(p <= 370) approx 100 digit precision:
 | |
|          return lanczos61UDT::g();
 | |
|    }
 | |
| };
 | |
| 
 | |
| template<class Policy>
 | |
| struct lanczos<mpfr_class, Policy>
 | |
| {
 | |
|    typedef mpfr_lanczos type;
 | |
| };
 | |
| 
 | |
| } // namespace lanczos
 | |
| 
 | |
| namespace constants{
 | |
| 
 | |
| template <class Real, class Policy>
 | |
| struct construction_traits;
 | |
| 
 | |
| template <class Policy>
 | |
| struct construction_traits<mpfr_class, Policy>
 | |
| {
 | |
|    typedef mpl::int_<0> type;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace tools
 | |
| {
 | |
| 
 | |
| template <class T, class U>
 | |
| struct promote_arg<__gmp_expr<T,U> >
 | |
| { // If T is integral type, then promote to double.
 | |
|   typedef mpfr_class type;
 | |
| };
 | |
| 
 | |
| template<>
 | |
| inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) BOOST_NOEXCEPT
 | |
| {
 | |
|    return mpfr_class::get_dprec();
 | |
| }
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
| template<class I>
 | |
| void convert_to_long_result(mpfr_class const& r, I& result)
 | |
| {
 | |
|    result = 0;
 | |
|    I last_result(0);
 | |
|    mpfr_class t(r);
 | |
|    double term;
 | |
|    do
 | |
|    {
 | |
|       term = real_cast<double>(t);
 | |
|       last_result = result;
 | |
|       result += static_cast<I>(term);
 | |
|       t -= term;
 | |
|    }while(result != last_result);
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class real_cast<mpfr_class, long long>(long long t)
 | |
| {
 | |
|    mpfr_class result;
 | |
|    int expon = 0;
 | |
|    int sign = 1;
 | |
|    if(t < 0)
 | |
|    {
 | |
|       sign = -1;
 | |
|       t = -t;
 | |
|    }
 | |
|    while(t)
 | |
|    {
 | |
|       result += ldexp((double)(t & 0xffffL), expon);
 | |
|       expon += 32;
 | |
|       t >>= 32;
 | |
|    }
 | |
|    return result * sign;
 | |
| }
 | |
| template <>
 | |
| inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    return t.get_ui();
 | |
| }
 | |
| template <>
 | |
| inline int real_cast<int, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    return t.get_si();
 | |
| }
 | |
| template <>
 | |
| inline double real_cast<double, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    return t.get_d();
 | |
| }
 | |
| template <>
 | |
| inline float real_cast<float, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    return static_cast<float>(t.get_d());
 | |
| }
 | |
| template <>
 | |
| inline long real_cast<long, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    long result;
 | |
|    detail::convert_to_long_result(t, result);
 | |
|    return result;
 | |
| }
 | |
| template <>
 | |
| inline long long real_cast<long long, mpfr_class>(mpfr_class t)
 | |
| {
 | |
|    long long result;
 | |
|    detail::convert_to_long_result(t, result);
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
 | |
| {
 | |
|    static bool has_init = false;
 | |
|    static mpfr_class val;
 | |
|    if(!has_init)
 | |
|    {
 | |
|       val = 0.5;
 | |
|       mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
 | |
|       has_init = true;
 | |
|    }
 | |
|    return val;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
 | |
| {
 | |
|    static bool has_init = false;
 | |
|    static mpfr_class val;
 | |
|    if(!has_init)
 | |
|    {
 | |
|       val = 0.5;
 | |
|       mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
 | |
|       has_init = true;
 | |
|    }
 | |
|    return val;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
 | |
| {
 | |
|    static bool has_init = false;
 | |
|    static mpfr_class val = max_value<mpfr_class>();
 | |
|    if(!has_init)
 | |
|    {
 | |
|       val = log(val);
 | |
|       has_init = true;
 | |
|    }
 | |
|    return val;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
 | |
| {
 | |
|    static bool has_init = false;
 | |
|    static mpfr_class val = max_value<mpfr_class>();
 | |
|    if(!has_init)
 | |
|    {
 | |
|       val = log(val);
 | |
|       has_init = true;
 | |
|    }
 | |
|    return val;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
 | |
| {
 | |
|    return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
 | |
| }
 | |
| 
 | |
| } // namespace tools
 | |
| 
 | |
| namespace policies{
 | |
| 
 | |
| template <class T, class U, class Policy>
 | |
| struct evaluation<__gmp_expr<T, U>, Policy>
 | |
| {
 | |
|    typedef mpfr_class type;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
 | |
| {
 | |
|    //
 | |
|    // This is 12 * sqrt(6) * zeta(3) / pi^3:
 | |
|    // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
 | |
|    //
 | |
|    return boost::lexical_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
 | |
| {
 | |
|   // using namespace boost::math::constants;
 | |
|   return boost::lexical_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
 | |
|   // Computed using NTL at 150 bit, about 50 decimal digits.
 | |
|   // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
 | |
| {
 | |
|   // using namespace boost::math::constants;
 | |
|   return boost::lexical_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
 | |
|   // Computed using NTL at 150 bit, about 50 decimal digits.
 | |
|   // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
 | |
|   // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
 | |
| }
 | |
| 
 | |
| template <class Policy>
 | |
| inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
 | |
| {
 | |
|   //using namespace boost::math::constants;
 | |
|   // Computed using NTL at 150 bit, about 50 decimal digits.
 | |
|   return boost::lexical_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
 | |
|   // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
 | |
|   //   (four_minus_pi<RealType>() * four_minus_pi<RealType>());
 | |
| } // kurtosis
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
| //
 | |
| // Version of Digamma accurate to ~100 decimal digits.
 | |
| //
 | |
| template <class Policy>
 | |
| mpfr_class digamma_imp(mpfr_class x, const mpl::int_<0>* , const Policy& pol)
 | |
| {
 | |
|    //
 | |
|    // This handles reflection of negative arguments, and all our
 | |
|    // empfr_classor handling, then forwards to the T-specific approximation.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
| 
 | |
|    mpfr_class result = 0;
 | |
|    //
 | |
|    // Check for negative arguments and use reflection:
 | |
|    //
 | |
|    if(x < 0)
 | |
|    {
 | |
|       // Reflect:
 | |
|       x = 1 - x;
 | |
|       // Argument reduction for tan:
 | |
|       mpfr_class remainder = x - floor(x);
 | |
|       // Shift to negative if > 0.5:
 | |
|       if(remainder > 0.5)
 | |
|       {
 | |
|          remainder -= 1;
 | |
|       }
 | |
|       //
 | |
|       // check for evaluation at a negative pole:
 | |
|       //
 | |
|       if(remainder == 0)
 | |
|       {
 | |
|          return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
 | |
|       }
 | |
|       result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
 | |
|    }
 | |
|    result += big_digamma(x);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // Specialisations of this function provides the initial
 | |
| // starting guess for Halley iteration:
 | |
| //
 | |
| template <class Policy>
 | |
| inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::mpl::int_<64>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING // for ADL of std names.
 | |
| 
 | |
|    mpfr_class result = 0;
 | |
|    
 | |
|    if(p <= 0.5)
 | |
|    {
 | |
|       //
 | |
|       // Evaluate inverse erf using the rational approximation:
 | |
|       //
 | |
|       // x = p(p+10)(Y+R(p))
 | |
|       //
 | |
|       // Where Y is a constant, and R(p) is optimised for a low
 | |
|       // absolute empfr_classor compared to |Y|.
 | |
|       //
 | |
|       // double: Max empfr_classor found: 2.001849e-18
 | |
|       // long double: Max empfr_classor found: 1.017064e-20
 | |
|       // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
 | |
|       //
 | |
|       static const float Y = 0.0891314744949340820313f;
 | |
|       static const mpfr_class P[] = {    
 | |
|          -0.000508781949658280665617,
 | |
|          -0.00836874819741736770379,
 | |
|          0.0334806625409744615033,
 | |
|          -0.0126926147662974029034,
 | |
|          -0.0365637971411762664006,
 | |
|          0.0219878681111168899165,
 | |
|          0.00822687874676915743155,
 | |
|          -0.00538772965071242932965
 | |
|       };
 | |
|       static const mpfr_class Q[] = {    
 | |
|          1,
 | |
|          -0.970005043303290640362,
 | |
|          -1.56574558234175846809,
 | |
|          1.56221558398423026363,
 | |
|          0.662328840472002992063,
 | |
|          -0.71228902341542847553,
 | |
|          -0.0527396382340099713954,
 | |
|          0.0795283687341571680018,
 | |
|          -0.00233393759374190016776,
 | |
|          0.000886216390456424707504
 | |
|       };
 | |
|       mpfr_class g = p * (p + 10);
 | |
|       mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
 | |
|       result = g * Y + g * r;
 | |
|    }
 | |
|    else if(q >= 0.25)
 | |
|    {
 | |
|       //
 | |
|       // Rational approximation for 0.5 > q >= 0.25
 | |
|       //
 | |
|       // x = sqrt(-2*log(q)) / (Y + R(q))
 | |
|       //
 | |
|       // Where Y is a constant, and R(q) is optimised for a low
 | |
|       // absolute empfr_classor compared to Y.
 | |
|       //
 | |
|       // double : Max empfr_classor found: 7.403372e-17
 | |
|       // long double : Max empfr_classor found: 6.084616e-20
 | |
|       // Maximum Deviation Found (empfr_classor term) 4.811e-20
 | |
|       //
 | |
|       static const float Y = 2.249481201171875f;
 | |
|       static const mpfr_class P[] = {    
 | |
|          -0.202433508355938759655,
 | |
|          0.105264680699391713268,
 | |
|          8.37050328343119927838,
 | |
|          17.6447298408374015486,
 | |
|          -18.8510648058714251895,
 | |
|          -44.6382324441786960818,
 | |
|          17.445385985570866523,
 | |
|          21.1294655448340526258,
 | |
|          -3.67192254707729348546
 | |
|       };
 | |
|       static const mpfr_class Q[] = {    
 | |
|          1,
 | |
|          6.24264124854247537712,
 | |
|          3.9713437953343869095,
 | |
|          -28.6608180499800029974,
 | |
|          -20.1432634680485188801,
 | |
|          48.5609213108739935468,
 | |
|          10.8268667355460159008,
 | |
|          -22.6436933413139721736,
 | |
|          1.72114765761200282724
 | |
|       };
 | |
|       mpfr_class g = sqrt(-2 * log(q));
 | |
|       mpfr_class xs = q - 0.25;
 | |
|       mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|       result = g / (Y + r);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // For q < 0.25 we have a series of rational approximations all
 | |
|       // of the general form:
 | |
|       //
 | |
|       // let: x = sqrt(-log(q))
 | |
|       //
 | |
|       // Then the result is given by:
 | |
|       //
 | |
|       // x(Y+R(x-B))
 | |
|       //
 | |
|       // where Y is a constant, B is the lowest value of x for which 
 | |
|       // the approximation is valid, and R(x-B) is optimised for a low
 | |
|       // absolute empfr_classor compared to Y.
 | |
|       //
 | |
|       // Note that almost all code will really go through the first
 | |
|       // or maybe second approximation.  After than we're dealing with very
 | |
|       // small input values indeed: 80 and 128 bit long double's go all the
 | |
|       // way down to ~ 1e-5000 so the "tail" is rather long...
 | |
|       //
 | |
|       mpfr_class x = sqrt(-log(q));
 | |
|       if(x < 3)
 | |
|       {
 | |
|          // Max empfr_classor found: 1.089051e-20
 | |
|          static const float Y = 0.807220458984375f;
 | |
|          static const mpfr_class P[] = {    
 | |
|             -0.131102781679951906451,
 | |
|             -0.163794047193317060787,
 | |
|             0.117030156341995252019,
 | |
|             0.387079738972604337464,
 | |
|             0.337785538912035898924,
 | |
|             0.142869534408157156766,
 | |
|             0.0290157910005329060432,
 | |
|             0.00214558995388805277169,
 | |
|             -0.679465575181126350155e-6,
 | |
|             0.285225331782217055858e-7,
 | |
|             -0.681149956853776992068e-9
 | |
|          };
 | |
|          static const mpfr_class Q[] = {    
 | |
|             1,
 | |
|             3.46625407242567245975,
 | |
|             5.38168345707006855425,
 | |
|             4.77846592945843778382,
 | |
|             2.59301921623620271374,
 | |
|             0.848854343457902036425,
 | |
|             0.152264338295331783612,
 | |
|             0.01105924229346489121
 | |
|          };
 | |
|          mpfr_class xs = x - 1.125;
 | |
|          mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|          result = Y * x + R * x;
 | |
|       }
 | |
|       else if(x < 6)
 | |
|       {
 | |
|          // Max empfr_classor found: 8.389174e-21
 | |
|          static const float Y = 0.93995571136474609375f;
 | |
|          static const mpfr_class P[] = {    
 | |
|             -0.0350353787183177984712,
 | |
|             -0.00222426529213447927281,
 | |
|             0.0185573306514231072324,
 | |
|             0.00950804701325919603619,
 | |
|             0.00187123492819559223345,
 | |
|             0.000157544617424960554631,
 | |
|             0.460469890584317994083e-5,
 | |
|             -0.230404776911882601748e-9,
 | |
|             0.266339227425782031962e-11
 | |
|          };
 | |
|          static const mpfr_class Q[] = {    
 | |
|             1,
 | |
|             1.3653349817554063097,
 | |
|             0.762059164553623404043,
 | |
|             0.220091105764131249824,
 | |
|             0.0341589143670947727934,
 | |
|             0.00263861676657015992959,
 | |
|             0.764675292302794483503e-4
 | |
|          };
 | |
|          mpfr_class xs = x - 3;
 | |
|          mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|          result = Y * x + R * x;
 | |
|       }
 | |
|       else if(x < 18)
 | |
|       {
 | |
|          // Max empfr_classor found: 1.481312e-19
 | |
|          static const float Y = 0.98362827301025390625f;
 | |
|          static const mpfr_class P[] = {    
 | |
|             -0.0167431005076633737133,
 | |
|             -0.00112951438745580278863,
 | |
|             0.00105628862152492910091,
 | |
|             0.000209386317487588078668,
 | |
|             0.149624783758342370182e-4,
 | |
|             0.449696789927706453732e-6,
 | |
|             0.462596163522878599135e-8,
 | |
|             -0.281128735628831791805e-13,
 | |
|             0.99055709973310326855e-16
 | |
|          };
 | |
|          static const mpfr_class Q[] = {    
 | |
|             1,
 | |
|             0.591429344886417493481,
 | |
|             0.138151865749083321638,
 | |
|             0.0160746087093676504695,
 | |
|             0.000964011807005165528527,
 | |
|             0.275335474764726041141e-4,
 | |
|             0.282243172016108031869e-6
 | |
|          };
 | |
|          mpfr_class xs = x - 6;
 | |
|          mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|          result = Y * x + R * x;
 | |
|       }
 | |
|       else if(x < 44)
 | |
|       {
 | |
|          // Max empfr_classor found: 5.697761e-20
 | |
|          static const float Y = 0.99714565277099609375f;
 | |
|          static const mpfr_class P[] = {    
 | |
|             -0.0024978212791898131227,
 | |
|             -0.779190719229053954292e-5,
 | |
|             0.254723037413027451751e-4,
 | |
|             0.162397777342510920873e-5,
 | |
|             0.396341011304801168516e-7,
 | |
|             0.411632831190944208473e-9,
 | |
|             0.145596286718675035587e-11,
 | |
|             -0.116765012397184275695e-17
 | |
|          };
 | |
|          static const mpfr_class Q[] = {    
 | |
|             1,
 | |
|             0.207123112214422517181,
 | |
|             0.0169410838120975906478,
 | |
|             0.000690538265622684595676,
 | |
|             0.145007359818232637924e-4,
 | |
|             0.144437756628144157666e-6,
 | |
|             0.509761276599778486139e-9
 | |
|          };
 | |
|          mpfr_class xs = x - 18;
 | |
|          mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|          result = Y * x + R * x;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          // Max empfr_classor found: 1.279746e-20
 | |
|          static const float Y = 0.99941349029541015625f;
 | |
|          static const mpfr_class P[] = {    
 | |
|             -0.000539042911019078575891,
 | |
|             -0.28398759004727721098e-6,
 | |
|             0.899465114892291446442e-6,
 | |
|             0.229345859265920864296e-7,
 | |
|             0.225561444863500149219e-9,
 | |
|             0.947846627503022684216e-12,
 | |
|             0.135880130108924861008e-14,
 | |
|             -0.348890393399948882918e-21
 | |
|          };
 | |
|          static const mpfr_class Q[] = {    
 | |
|             1,
 | |
|             0.0845746234001899436914,
 | |
|             0.00282092984726264681981,
 | |
|             0.468292921940894236786e-4,
 | |
|             0.399968812193862100054e-6,
 | |
|             0.161809290887904476097e-8,
 | |
|             0.231558608310259605225e-11
 | |
|          };
 | |
|          mpfr_class xs = x - 44;
 | |
|          mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
 | |
|          result = Y * x + R * x;
 | |
|       }
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| inline mpfr_class bessel_i0(mpfr_class x)
 | |
| {
 | |
|     static const mpfr_class P1[] = {
 | |
|         boost::lexical_cast<mpfr_class>("-2.2335582639474375249e+15"),
 | |
|         boost::lexical_cast<mpfr_class>("-5.5050369673018427753e+14"),
 | |
|         boost::lexical_cast<mpfr_class>("-3.2940087627407749166e+13"),
 | |
|         boost::lexical_cast<mpfr_class>("-8.4925101247114157499e+11"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.1912746104985237192e+10"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.0313066708737980747e+08"),
 | |
|         boost::lexical_cast<mpfr_class>("-5.9545626019847898221e+05"),
 | |
|         boost::lexical_cast<mpfr_class>("-2.4125195876041896775e+03"),
 | |
|         boost::lexical_cast<mpfr_class>("-7.0935347449210549190e+00"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.5453977791786851041e-02"),
 | |
|         boost::lexical_cast<mpfr_class>("-2.5172644670688975051e-05"),
 | |
|         boost::lexical_cast<mpfr_class>("-3.0517226450451067446e-08"),
 | |
|         boost::lexical_cast<mpfr_class>("-2.6843448573468483278e-11"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.5982226675653184646e-14"),
 | |
|         boost::lexical_cast<mpfr_class>("-5.2487866627945699800e-18"),
 | |
|     };
 | |
|     static const mpfr_class Q1[] = {
 | |
|         boost::lexical_cast<mpfr_class>("-2.2335582639474375245e+15"),
 | |
|         boost::lexical_cast<mpfr_class>("7.8858692566751002988e+12"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.2207067397808979846e+10"),
 | |
|         boost::lexical_cast<mpfr_class>("1.0377081058062166144e+07"),
 | |
|         boost::lexical_cast<mpfr_class>("-4.8527560179962773045e+03"),
 | |
|         boost::lexical_cast<mpfr_class>("1.0"),
 | |
|     };
 | |
|     static const mpfr_class P2[] = {
 | |
|         boost::lexical_cast<mpfr_class>("-2.2210262233306573296e-04"),
 | |
|         boost::lexical_cast<mpfr_class>("1.3067392038106924055e-02"),
 | |
|         boost::lexical_cast<mpfr_class>("-4.4700805721174453923e-01"),
 | |
|         boost::lexical_cast<mpfr_class>("5.5674518371240761397e+00"),
 | |
|         boost::lexical_cast<mpfr_class>("-2.3517945679239481621e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("3.1611322818701131207e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("-9.6090021968656180000e+00"),
 | |
|     };
 | |
|     static const mpfr_class Q2[] = {
 | |
|         boost::lexical_cast<mpfr_class>("-5.5194330231005480228e-04"),
 | |
|         boost::lexical_cast<mpfr_class>("3.2547697594819615062e-02"),
 | |
|         boost::lexical_cast<mpfr_class>("-1.1151759188741312645e+00"),
 | |
|         boost::lexical_cast<mpfr_class>("1.3982595353892851542e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("-6.0228002066743340583e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("8.5539563258012929600e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("-3.1446690275135491500e+01"),
 | |
|         boost::lexical_cast<mpfr_class>("1.0"),
 | |
|     };
 | |
|     mpfr_class value, factor, r;
 | |
| 
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     if (x < 0)
 | |
|     {
 | |
|         x = -x;                         // even function
 | |
|     }
 | |
|     if (x == 0)
 | |
|     {
 | |
|         return static_cast<mpfr_class>(1);
 | |
|     }
 | |
|     if (x <= 15)                        // x in (0, 15]
 | |
|     {
 | |
|         mpfr_class y = x * x;
 | |
|         value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
 | |
|     }
 | |
|     else                                // x in (15, \infty)
 | |
|     {
 | |
|         mpfr_class y = 1 / x - mpfr_class(1) / 15;
 | |
|         r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
 | |
|         factor = exp(x) / sqrt(x);
 | |
|         value = factor * r;
 | |
|     }
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| inline mpfr_class bessel_i1(mpfr_class x)
 | |
| {
 | |
|     static const mpfr_class P1[] = {
 | |
|         static_cast<mpfr_class>("-1.4577180278143463643e+15"),
 | |
|         static_cast<mpfr_class>("-1.7732037840791591320e+14"),
 | |
|         static_cast<mpfr_class>("-6.9876779648010090070e+12"),
 | |
|         static_cast<mpfr_class>("-1.3357437682275493024e+11"),
 | |
|         static_cast<mpfr_class>("-1.4828267606612366099e+09"),
 | |
|         static_cast<mpfr_class>("-1.0588550724769347106e+07"),
 | |
|         static_cast<mpfr_class>("-5.1894091982308017540e+04"),
 | |
|         static_cast<mpfr_class>("-1.8225946631657315931e+02"),
 | |
|         static_cast<mpfr_class>("-4.7207090827310162436e-01"),
 | |
|         static_cast<mpfr_class>("-9.1746443287817501309e-04"),
 | |
|         static_cast<mpfr_class>("-1.3466829827635152875e-06"),
 | |
|         static_cast<mpfr_class>("-1.4831904935994647675e-09"),
 | |
|         static_cast<mpfr_class>("-1.1928788903603238754e-12"),
 | |
|         static_cast<mpfr_class>("-6.5245515583151902910e-16"),
 | |
|         static_cast<mpfr_class>("-1.9705291802535139930e-19"),
 | |
|     };
 | |
|     static const mpfr_class Q1[] = {
 | |
|         static_cast<mpfr_class>("-2.9154360556286927285e+15"),
 | |
|         static_cast<mpfr_class>("9.7887501377547640438e+12"),
 | |
|         static_cast<mpfr_class>("-1.4386907088588283434e+10"),
 | |
|         static_cast<mpfr_class>("1.1594225856856884006e+07"),
 | |
|         static_cast<mpfr_class>("-5.1326864679904189920e+03"),
 | |
|         static_cast<mpfr_class>("1.0"),
 | |
|     };
 | |
|     static const mpfr_class P2[] = {
 | |
|         static_cast<mpfr_class>("1.4582087408985668208e-05"),
 | |
|         static_cast<mpfr_class>("-8.9359825138577646443e-04"),
 | |
|         static_cast<mpfr_class>("2.9204895411257790122e-02"),
 | |
|         static_cast<mpfr_class>("-3.4198728018058047439e-01"),
 | |
|         static_cast<mpfr_class>("1.3960118277609544334e+00"),
 | |
|         static_cast<mpfr_class>("-1.9746376087200685843e+00"),
 | |
|         static_cast<mpfr_class>("8.5591872901933459000e-01"),
 | |
|         static_cast<mpfr_class>("-6.0437159056137599999e-02"),
 | |
|     };
 | |
|     static const mpfr_class Q2[] = {
 | |
|         static_cast<mpfr_class>("3.7510433111922824643e-05"),
 | |
|         static_cast<mpfr_class>("-2.2835624489492512649e-03"),
 | |
|         static_cast<mpfr_class>("7.4212010813186530069e-02"),
 | |
|         static_cast<mpfr_class>("-8.5017476463217924408e-01"),
 | |
|         static_cast<mpfr_class>("3.2593714889036996297e+00"),
 | |
|         static_cast<mpfr_class>("-3.8806586721556593450e+00"),
 | |
|         static_cast<mpfr_class>("1.0"),
 | |
|     };
 | |
|     mpfr_class value, factor, r, w;
 | |
| 
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     w = abs(x);
 | |
|     if (x == 0)
 | |
|     {
 | |
|         return static_cast<mpfr_class>(0);
 | |
|     }
 | |
|     if (w <= 15)                        // w in (0, 15]
 | |
|     {
 | |
|         mpfr_class y = x * x;
 | |
|         r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
 | |
|         factor = w;
 | |
|         value = factor * r;
 | |
|     }
 | |
|     else                                // w in (15, \infty)
 | |
|     {
 | |
|         mpfr_class y = 1 / w - mpfr_class(1) / 15;
 | |
|         r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
 | |
|         factor = exp(w) / sqrt(w);
 | |
|         value = factor * r;
 | |
|     }
 | |
| 
 | |
|     if (x < 0)
 | |
|     {
 | |
|         value *= -value;                 // odd function
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| }
 | |
| 
 | |
| template<> struct is_convertible<long double, mpfr_class> : public mpl::false_{};
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
 | |
| 
 | 
