js8call/.svn/pristine/54/541da994cc54a7b3b6ff78ab6d22b3e8cdd4494c.svn-base
2018-02-08 21:28:33 -05:00

736 lines
25 KiB
Plaintext

// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#define BOOST_UNORDERED_DETAIL_EQUIVALENT_HPP_INCLUDED
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/unordered/detail/extract_key.hpp>
namespace boost { namespace unordered { namespace detail {
template <typename A, typename T> struct grouped_node;
template <typename T> struct grouped_ptr_node;
template <typename Types> struct grouped_table_impl;
template <typename A, typename T>
struct grouped_node :
boost::unordered::detail::value_base<T>
{
typedef typename ::boost::unordered::detail::rebind_wrap<
A, grouped_node<A, T> >::type allocator;
typedef typename ::boost::unordered::detail::
allocator_traits<allocator>::pointer node_pointer;
typedef node_pointer link_pointer;
link_pointer next_;
node_pointer group_prev_;
std::size_t hash_;
grouped_node() :
next_(),
group_prev_(),
hash_(0)
{}
void init(node_pointer self)
{
group_prev_ = self;
}
private:
grouped_node& operator=(grouped_node const&);
};
template <typename T>
struct grouped_ptr_node :
boost::unordered::detail::ptr_bucket
{
typedef T value_type;
typedef boost::unordered::detail::ptr_bucket bucket_base;
typedef grouped_ptr_node<T>* node_pointer;
typedef ptr_bucket* link_pointer;
node_pointer group_prev_;
std::size_t hash_;
boost::unordered::detail::value_base<T> value_base_;
grouped_ptr_node() :
bucket_base(),
group_prev_(0),
hash_(0)
{}
void init(node_pointer self)
{
group_prev_ = self;
}
void* address() { return value_base_.address(); }
value_type& value() { return value_base_.value(); }
value_type* value_ptr() { return value_base_.value_ptr(); }
private:
grouped_ptr_node& operator=(grouped_ptr_node const&);
};
// If the allocator uses raw pointers use grouped_ptr_node
// Otherwise use grouped_node.
template <typename A, typename T, typename NodePtr, typename BucketPtr>
struct pick_grouped_node2
{
typedef boost::unordered::detail::grouped_node<A, T> node;
typedef typename boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A, node>::type
>::pointer node_pointer;
typedef boost::unordered::detail::bucket<node_pointer> bucket;
typedef node_pointer link_pointer;
};
template <typename A, typename T>
struct pick_grouped_node2<A, T,
boost::unordered::detail::grouped_ptr_node<T>*,
boost::unordered::detail::ptr_bucket*>
{
typedef boost::unordered::detail::grouped_ptr_node<T> node;
typedef boost::unordered::detail::ptr_bucket bucket;
typedef bucket* link_pointer;
};
template <typename A, typename T>
struct pick_grouped_node
{
typedef typename boost::remove_const<T>::type nonconst;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::grouped_ptr_node<nonconst> >::type
> tentative_node_traits;
typedef boost::unordered::detail::allocator_traits<
typename boost::unordered::detail::rebind_wrap<A,
boost::unordered::detail::ptr_bucket >::type
> tentative_bucket_traits;
typedef pick_grouped_node2<A, nonconst,
typename tentative_node_traits::pointer,
typename tentative_bucket_traits::pointer> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
};
template <typename Types>
struct grouped_table_impl : boost::unordered::detail::table<Types>
{
typedef boost::unordered::detail::table<Types> table;
typedef typename table::value_type value_type;
typedef typename table::bucket bucket;
typedef typename table::policy policy;
typedef typename table::node_pointer node_pointer;
typedef typename table::node_allocator node_allocator;
typedef typename table::node_allocator_traits node_allocator_traits;
typedef typename table::bucket_pointer bucket_pointer;
typedef typename table::link_pointer link_pointer;
typedef typename table::hasher hasher;
typedef typename table::key_equal key_equal;
typedef typename table::key_type key_type;
typedef typename table::node_constructor node_constructor;
typedef typename table::node_tmp node_tmp;
typedef typename table::extractor extractor;
typedef typename table::iterator iterator;
typedef typename table::c_iterator c_iterator;
// Constructors
grouped_table_impl(std::size_t n,
hasher const& hf,
key_equal const& eq,
node_allocator const& a)
: table(n, hf, eq, a)
{}
grouped_table_impl(grouped_table_impl const& x)
: table(x, node_allocator_traits::
select_on_container_copy_construction(x.node_alloc()))
{
this->init(x);
}
grouped_table_impl(grouped_table_impl const& x,
node_allocator const& a)
: table(x, a)
{
this->init(x);
}
grouped_table_impl(grouped_table_impl& x,
boost::unordered::detail::move_tag m)
: table(x, m)
{}
grouped_table_impl(grouped_table_impl& x,
node_allocator const& a,
boost::unordered::detail::move_tag m)
: table(x, a, m)
{
this->move_init(x);
}
// Node functions.
static inline node_pointer next_node(link_pointer n) {
return static_cast<node_pointer>(n->next_);
}
static inline node_pointer next_group(node_pointer n) {
return static_cast<node_pointer>(n->group_prev_->next_);
}
// Accessors
template <class Key, class Pred>
node_pointer find_node_impl(
std::size_t key_hash,
Key const& k,
Pred const& eq) const
{
std::size_t bucket_index = this->hash_to_bucket(key_hash);
node_pointer n = this->begin(bucket_index);
for (;;)
{
if (!n) return n;
std::size_t node_hash = n->hash_;
if (key_hash == node_hash)
{
if (eq(k, this->get_key(n->value())))
return n;
}
else
{
if (this->hash_to_bucket(node_hash) != bucket_index)
return node_pointer();
}
n = next_group(n);
}
}
std::size_t count(key_type const& k) const
{
node_pointer n = this->find_node(k);
if (!n) return 0;
std::size_t x = 0;
node_pointer it = n;
do {
it = it->group_prev_;
++x;
} while(it != n);
return x;
}
std::pair<iterator, iterator>
equal_range(key_type const& k) const
{
node_pointer n = this->find_node(k);
return std::make_pair(iterator(n), iterator(n ? next_group(n) : n));
}
// Equality
bool equals(grouped_table_impl const& other) const
{
if(this->size_ != other.size_) return false;
for(node_pointer n1 = this->begin(); n1;)
{
node_pointer n2 = other.find_node(other.get_key(n1->value()));
if (!n2) return false;
node_pointer end1 = next_group(n1);
node_pointer end2 = next_group(n2);
if (!group_equals(n1, end1, n2, end2)) return false;
n1 = end1;
}
return true;
}
static bool group_equals(node_pointer n1, node_pointer end1,
node_pointer n2, node_pointer end2)
{
for(;;)
{
if (n1->value() != n2->value()) break;
n1 = next_node(n1);
n2 = next_node(n2);
if (n1 == end1) return n2 == end2;
if (n2 == end2) return false;
}
for(node_pointer n1a = n1, n2a = n2;;)
{
n1a = next_node(n1a);
n2a = next_node(n2a);
if (n1a == end1)
{
if (n2a == end2) break;
else return false;
}
if (n2a == end2) return false;
}
node_pointer start = n1;
for(;n1 != end1; n1 = next_node(n1))
{
value_type const& v = n1->value();
if (!find(start, n1, v)) {
std::size_t matches = count_equal(n2, end2, v);
if (!matches) return false;
if (matches != 1 + count_equal(next_node(n1), end1, v)) return false;
}
}
return true;
}
static bool find(node_pointer n, node_pointer end, value_type const& v)
{
for(;n != end; n = next_node(n))
if (n->value() == v)
return true;
return false;
}
static std::size_t count_equal(node_pointer n, node_pointer end,
value_type const& v)
{
std::size_t count = 0;
for(;n != end; n = next_node(n))
if (n->value() == v) ++count;
return count;
}
// Emplace/Insert
// Add node 'n' to the group containing 'pos'.
// If 'pos' is the first node in group, add to the end of the group,
// otherwise add before 'pos'.
static inline void add_to_node_group(
node_pointer n,
node_pointer pos)
{
n->next_ = pos->group_prev_->next_;
n->group_prev_ = pos->group_prev_;
pos->group_prev_->next_ = n;
pos->group_prev_ = n;
}
inline node_pointer add_node(
node_pointer n,
std::size_t key_hash,
node_pointer pos)
{
n->hash_ = key_hash;
if (pos) {
this->add_to_node_group(n, pos);
if (n->next_) {
std::size_t next_bucket = this->hash_to_bucket(
next_node(n)->hash_);
if (next_bucket != this->hash_to_bucket(key_hash)) {
this->get_bucket(next_bucket)->next_ = n;
}
}
}
else {
bucket_pointer b = this->get_bucket(
this->hash_to_bucket(key_hash));
if (!b->next_)
{
link_pointer start_node = this->get_previous_start();
if (start_node->next_) {
this->get_bucket(this->hash_to_bucket(
next_node(start_node)->hash_
))->next_ = n;
}
b->next_ = start_node;
n->next_ = start_node->next_;
start_node->next_ = n;
}
else
{
n->next_ = b->next_->next_;
b->next_->next_ = n;
}
}
++this->size_;
return n;
}
inline node_pointer add_using_hint(
node_pointer n,
node_pointer hint)
{
n->hash_ = hint->hash_;
this->add_to_node_group(n, hint);
if (n->next_ != hint && n->next_) {
std::size_t next_bucket = this->hash_to_bucket(
next_node(n)->hash_);
if (next_bucket != this->hash_to_bucket(n->hash_)) {
this->get_bucket(next_bucket)->next_ = n;
}
}
++this->size_;
return n;
}
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
# if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
iterator emplace(boost::unordered::detail::emplace_args1<
boost::unordered::detail::please_ignore_this_overload> const&)
{
BOOST_ASSERT(false);
return iterator();
}
iterator emplace_hint(c_iterator, boost::unordered::detail::emplace_args1<
boost::unordered::detail::please_ignore_this_overload> const&)
{
BOOST_ASSERT(false);
return iterator();
}
# else
iterator emplace(
boost::unordered::detail::please_ignore_this_overload const&)
{
BOOST_ASSERT(false);
return iterator();
}
iterator emplace_hint(c_iterator,
boost::unordered::detail::please_ignore_this_overload const&)
{
BOOST_ASSERT(false);
return iterator();
}
# endif
#endif
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace(BOOST_UNORDERED_EMPLACE_ARGS)
{
return iterator(emplace_impl(
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD)));
}
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
iterator emplace_hint(c_iterator hint, BOOST_UNORDERED_EMPLACE_ARGS)
{
return iterator(emplace_hint_impl(hint,
boost::unordered::detail::func::construct_node_from_args(
this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD)));
}
iterator emplace_impl(node_pointer n)
{
node_tmp a(n, this->node_alloc());
key_type const& k = this->get_key(a.node_->value());
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
return iterator(this->add_node(a.release(), key_hash, position));
}
iterator emplace_hint_impl(c_iterator hint, node_pointer n)
{
node_tmp a(n, this->node_alloc());
key_type const& k = this->get_key(a.node_->value());
if (hint.node_ && this->key_eq()(k, this->get_key(*hint))) {
this->reserve_for_insert(this->size_ + 1);
return iterator(this->add_using_hint(a.release(), hint.node_));
}
else {
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->reserve_for_insert(this->size_ + 1);
return iterator(this->add_node(a.release(), key_hash, position));
}
}
void emplace_impl_no_rehash(node_pointer n)
{
node_tmp a(n, this->node_alloc());
key_type const& k = this->get_key(a.node_->value());
std::size_t key_hash = this->hash(k);
node_pointer position = this->find_node(key_hash, k);
this->add_node(a.release(), key_hash, position);
}
////////////////////////////////////////////////////////////////////////
// Insert range methods
// if hash function throws, or inserting > 1 element, basic exception
// safety. Strong otherwise
template <class I>
void insert_range(I i, I j, typename
boost::unordered::detail::enable_if_forward<I, void*>::type = 0)
{
if(i == j) return;
std::size_t distance = static_cast<std::size_t>(std::distance(i, j));
if(distance == 1) {
emplace_impl(
boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
}
else {
// Only require basic exception safety here
this->reserve_for_insert(this->size_ + distance);
for (; i != j; ++i) {
emplace_impl_no_rehash(
boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
}
}
}
template <class I>
void insert_range(I i, I j, typename
boost::unordered::detail::disable_if_forward<I, void*>::type = 0)
{
for (; i != j; ++i) {
emplace_impl(
boost::unordered::detail::func::construct_node(
this->node_alloc(), *i));
}
}
////////////////////////////////////////////////////////////////////////
// Erase
//
// no throw
std::size_t erase_key(key_type const& k)
{
if(!this->size_) return 0;
std::size_t key_hash = this->hash(k);
std::size_t bucket_index = this->hash_to_bucket(key_hash);
link_pointer prev = this->get_previous_start(bucket_index);
if (!prev) return 0;
node_pointer first_node;
for (;;)
{
if (!prev->next_) return 0;
first_node = next_node(prev);
std::size_t node_hash = first_node->hash_;
if (this->hash_to_bucket(node_hash) != bucket_index)
return 0;
if (node_hash == key_hash &&
this->key_eq()(k, this->get_key(first_node->value())))
break;
prev = first_node->group_prev_;
}
link_pointer end = first_node->group_prev_->next_;
std::size_t deleted_count = this->delete_nodes(prev, end);
this->fix_bucket(bucket_index, prev);
return deleted_count;
}
iterator erase(c_iterator r)
{
BOOST_ASSERT(r.node_);
node_pointer next = next_node(r.node_);
erase_nodes(r.node_, next);
return iterator(next);
}
iterator erase_range(c_iterator r1, c_iterator r2)
{
if (r1 == r2) return iterator(r2.node_);
erase_nodes(r1.node_, r2.node_);
return iterator(r2.node_);
}
link_pointer erase_nodes(node_pointer i, node_pointer j)
{
std::size_t bucket_index = this->hash_to_bucket(i->hash_);
// Split the groups containing 'i' and 'j'.
// And get the pointer to the node before i while
// we're at it.
link_pointer prev = split_groups(i, j);
// If we don't have a 'prev' it means that i is at the
// beginning of a block, so search through the blocks in the
// same bucket.
if (!prev) {
prev = this->get_previous_start(bucket_index);
while (prev->next_ != i)
prev = next_node(prev)->group_prev_;
}
// Delete the nodes.
do {
link_pointer group_end = next_group(next_node(prev));
this->delete_nodes(prev, group_end);
bucket_index = this->fix_bucket(bucket_index, prev);
} while(prev->next_ != j);
return prev;
}
static link_pointer split_groups(node_pointer i, node_pointer j)
{
node_pointer prev = i->group_prev_;
if (prev->next_ != i) prev = node_pointer();
if (j) {
node_pointer first = j;
while (first != i && first->group_prev_->next_ == first) {
first = first->group_prev_;
}
boost::swap(first->group_prev_, j->group_prev_);
if (first == i) return prev;
}
if (prev) {
node_pointer first = prev;
while (first->group_prev_->next_ == first) {
first = first->group_prev_;
}
boost::swap(first->group_prev_, i->group_prev_);
}
return prev;
}
////////////////////////////////////////////////////////////////////////
// fill_buckets
void copy_buckets(table const& src) {
this->create_buckets(this->bucket_count_);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = n->hash_;
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n))
{
this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), n->value()), key_hash, pos);
}
}
}
void move_buckets(table const& src) {
this->create_buckets(this->bucket_count_);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = n->hash_;
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), boost::move(n->value())), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n))
{
this->add_node(
boost::unordered::detail::func::construct_node(
this->node_alloc(), boost::move(n->value())), key_hash, pos);
}
}
}
void assign_buckets(table const& src) {
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = n->hash_;
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node(holder.copy_of(n->value()), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n))
{
this->add_node(holder.copy_of(n->value()), key_hash, pos);
}
}
}
void move_assign_buckets(table& src) {
node_holder<node_allocator> holder(*this);
for (node_pointer n = src.begin(); n;) {
std::size_t key_hash = n->hash_;
node_pointer group_end(next_group(n));
node_pointer pos = this->add_node(holder.move_copy_of(n->value()), key_hash, node_pointer());
for (n = next_node(n); n != group_end; n = next_node(n))
{
this->add_node(holder.move_copy_of(n->value()), key_hash, pos);
}
}
}
// strong otherwise exception safety
void rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->buckets_);
this->create_buckets(num_buckets);
link_pointer prev = this->get_previous_start();
while (prev->next_)
prev = place_in_bucket(*this, prev, next_node(prev)->group_prev_);
}
// Iterate through the nodes placing them in the correct buckets.
// pre: prev->next_ is not null.
static link_pointer place_in_bucket(table& dst,
link_pointer prev, node_pointer end)
{
bucket_pointer b = dst.get_bucket(dst.hash_to_bucket(end->hash_));
if (!b->next_) {
b->next_ = prev;
return end;
}
else {
link_pointer next = end->next_;
end->next_ = b->next_->next_;
b->next_->next_ = prev->next_;
prev->next_ = next;
return prev;
}
}
};
}}}
#endif