202 lines
6.1 KiB
Plaintext
202 lines
6.1 KiB
Plaintext
// Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// History:
|
|
// XZ wrote the original of this file as part of the Google
|
|
// Summer of Code 2006. JM modified it slightly to fit into the
|
|
// Boost.Math conceptual framework better.
|
|
// Updated 2015 to use Carlson's latest methods.
|
|
|
|
#ifndef BOOST_MATH_ELLINT_RD_HPP
|
|
#define BOOST_MATH_ELLINT_RD_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/math/special_functions/math_fwd.hpp>
|
|
#include <boost/math/special_functions/ellint_rc.hpp>
|
|
#include <boost/math/special_functions/pow.hpp>
|
|
#include <boost/math/tools/config.hpp>
|
|
#include <boost/math/policies/error_handling.hpp>
|
|
|
|
// Carlson's elliptic integral of the second kind
|
|
// R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
|
|
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
|
|
|
|
namespace boost { namespace math { namespace detail{
|
|
|
|
template <typename T, typename Policy>
|
|
T ellint_rd_imp(T x, T y, T z, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
using std::swap;
|
|
|
|
static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
|
|
|
|
if(x < 0)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"Argument x must be >= 0, but got %1%", x, pol);
|
|
}
|
|
if(y < 0)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"Argument y must be >= 0, but got %1%", y, pol);
|
|
}
|
|
if(z <= 0)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"Argument z must be > 0, but got %1%", z, pol);
|
|
}
|
|
if(x + y == 0)
|
|
{
|
|
return policies::raise_domain_error<T>(function,
|
|
"At most one argument can be zero, but got, x + y = %1%", x + y, pol);
|
|
}
|
|
//
|
|
// Special cases from http://dlmf.nist.gov/19.20#iv
|
|
//
|
|
using std::swap;
|
|
if(x == z)
|
|
swap(x, y);
|
|
if(y == z)
|
|
{
|
|
if(x == y)
|
|
{
|
|
return 1 / (x * sqrt(x));
|
|
}
|
|
else if(x == 0)
|
|
{
|
|
return 3 * constants::pi<T>() / (4 * y * sqrt(y));
|
|
}
|
|
else
|
|
{
|
|
if((std::min)(x, y) / (std::max)(x, y) > 1.3)
|
|
return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
|
|
// Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
|
|
}
|
|
}
|
|
if(x == y)
|
|
{
|
|
if((std::min)(x, z) / (std::max)(x, z) > 1.3)
|
|
return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
|
|
// Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
|
|
}
|
|
if(y == 0)
|
|
swap(x, y);
|
|
if(x == 0)
|
|
{
|
|
//
|
|
// Special handling for common case, from
|
|
// Numerical Computation of Real or Complex Elliptic Integrals, eq.47
|
|
//
|
|
T xn = sqrt(y);
|
|
T yn = sqrt(z);
|
|
T x0 = xn;
|
|
T y0 = yn;
|
|
T sum = 0;
|
|
T sum_pow = 0.25f;
|
|
|
|
while(fabs(xn - yn) >= 2.7 * tools::root_epsilon<T>() * fabs(xn))
|
|
{
|
|
T t = sqrt(xn * yn);
|
|
xn = (xn + yn) / 2;
|
|
yn = t;
|
|
sum_pow *= 2;
|
|
sum += sum_pow * boost::math::pow<2>(xn - yn);
|
|
}
|
|
T RF = constants::pi<T>() / (xn + yn);
|
|
//
|
|
// This following calculation suffers from serious cancellation when y ~ z
|
|
// unless we combine terms. We have:
|
|
//
|
|
// ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
|
|
//
|
|
// Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
|
|
//
|
|
T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
|
|
//
|
|
// Since we've moved the demoninator from eq.47 inside the expression, we
|
|
// need to also scale "sum" by the same value:
|
|
//
|
|
pt -= sum / (z * (y - z));
|
|
return pt * RF * 3;
|
|
}
|
|
|
|
T xn = x;
|
|
T yn = y;
|
|
T zn = z;
|
|
T An = (x + y + 3 * z) / 5;
|
|
T A0 = An;
|
|
// This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
|
|
T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
|
|
T lambda, rx, ry, rz;
|
|
unsigned k = 0;
|
|
T fn = 1;
|
|
T RD_sum = 0;
|
|
|
|
for(; k < policies::get_max_series_iterations<Policy>(); ++k)
|
|
{
|
|
rx = sqrt(xn);
|
|
ry = sqrt(yn);
|
|
rz = sqrt(zn);
|
|
lambda = rx * ry + rx * rz + ry * rz;
|
|
RD_sum += fn / (rz * (zn + lambda));
|
|
An = (An + lambda) / 4;
|
|
xn = (xn + lambda) / 4;
|
|
yn = (yn + lambda) / 4;
|
|
zn = (zn + lambda) / 4;
|
|
fn /= 4;
|
|
Q /= 4;
|
|
if(Q < An)
|
|
break;
|
|
}
|
|
|
|
policies::check_series_iterations<T, Policy>(function, k, pol);
|
|
|
|
T X = fn * (A0 - x) / An;
|
|
T Y = fn * (A0 - y) / An;
|
|
T Z = -(X + Y) / 3;
|
|
T E2 = X * Y - 6 * Z * Z;
|
|
T E3 = (3 * X * Y - 8 * Z * Z) * Z;
|
|
T E4 = 3 * (X * Y - Z * Z) * Z * Z;
|
|
T E5 = X * Y * Z * Z * Z;
|
|
|
|
T result = fn * pow(An, T(-3) / 2) *
|
|
(1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
|
|
+ 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
|
|
result += 3 * RD_sum;
|
|
|
|
return result;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <class T1, class T2, class T3, class Policy>
|
|
inline typename tools::promote_args<T1, T2, T3>::type
|
|
ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
|
|
{
|
|
typedef typename tools::promote_args<T1, T2, T3>::type result_type;
|
|
typedef typename policies::evaluation<result_type, Policy>::type value_type;
|
|
return policies::checked_narrowing_cast<result_type, Policy>(
|
|
detail::ellint_rd_imp(
|
|
static_cast<value_type>(x),
|
|
static_cast<value_type>(y),
|
|
static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
|
|
}
|
|
|
|
template <class T1, class T2, class T3>
|
|
inline typename tools::promote_args<T1, T2, T3>::type
|
|
ellint_rd(T1 x, T2 y, T3 z)
|
|
{
|
|
return ellint_rd(x, y, z, policies::policy<>());
|
|
}
|
|
|
|
}} // namespaces
|
|
|
|
#endif // BOOST_MATH_ELLINT_RD_HPP
|
|
|