287 lines
10 KiB
Plaintext
287 lines
10 KiB
Plaintext
//---------------------------------------------------------------------------//
|
|
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0
|
|
// See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt
|
|
//
|
|
// See http://boostorg.github.com/compute for more information.
|
|
//---------------------------------------------------------------------------//
|
|
|
|
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
|
|
#define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
|
|
|
|
#include <iterator>
|
|
|
|
#include <boost/compute/utility/source.hpp>
|
|
#include <boost/compute/program.hpp>
|
|
#include <boost/compute/command_queue.hpp>
|
|
#include <boost/compute/detail/vendor.hpp>
|
|
#include <boost/compute/detail/parameter_cache.hpp>
|
|
#include <boost/compute/detail/work_size.hpp>
|
|
#include <boost/compute/detail/meta_kernel.hpp>
|
|
#include <boost/compute/type_traits/type_name.hpp>
|
|
#include <boost/compute/utility/program_cache.hpp>
|
|
|
|
namespace boost {
|
|
namespace compute {
|
|
namespace detail {
|
|
|
|
/// \internal
|
|
/// body reduction inside a warp
|
|
template<typename T,bool isNvidiaDevice>
|
|
struct ReduceBody
|
|
{
|
|
static std::string body()
|
|
{
|
|
std::stringstream k;
|
|
// local reduction
|
|
k << "for(int i = 1; i < TPB; i <<= 1){\n" <<
|
|
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
|
|
" uint mask = (i << 1) - 1;\n" <<
|
|
" if((lid & mask) == 0){\n" <<
|
|
" scratch[lid] += scratch[lid+i];\n" <<
|
|
" }\n" <<
|
|
"}\n";
|
|
return k.str();
|
|
}
|
|
};
|
|
|
|
/// \internal
|
|
/// body reduction inside a warp
|
|
/// for nvidia device we can use the "unsafe"
|
|
/// memory optimisation
|
|
template<typename T>
|
|
struct ReduceBody<T,true>
|
|
{
|
|
static std::string body()
|
|
{
|
|
std::stringstream k;
|
|
// local reduction
|
|
// we use TPB to compile only useful instruction
|
|
// local reduction when size is greater than warp size
|
|
k << "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
|
|
"if(TPB >= 1024){\n" <<
|
|
"if(lid < 512) { sum += scratch[lid + 512]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
|
|
"if(TPB >= 512){\n" <<
|
|
"if(lid < 256) { sum += scratch[lid + 256]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
|
|
"if(TPB >= 256){\n" <<
|
|
"if(lid < 128) { sum += scratch[lid + 128]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
|
|
"if(TPB >= 128){\n" <<
|
|
"if(lid < 64) { sum += scratch[lid + 64]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);} \n" <<
|
|
|
|
// warp reduction
|
|
"if(lid < 32){\n" <<
|
|
// volatile this way we don't need any barrier
|
|
"volatile __local " << type_name<T>() << " *lmem = scratch;\n" <<
|
|
"if(TPB >= 64) { lmem[lid] = sum = sum + lmem[lid+32];} \n" <<
|
|
"if(TPB >= 32) { lmem[lid] = sum = sum + lmem[lid+16];} \n" <<
|
|
"if(TPB >= 16) { lmem[lid] = sum = sum + lmem[lid+ 8];} \n" <<
|
|
"if(TPB >= 8) { lmem[lid] = sum = sum + lmem[lid+ 4];} \n" <<
|
|
"if(TPB >= 4) { lmem[lid] = sum = sum + lmem[lid+ 2];} \n" <<
|
|
"if(TPB >= 2) { lmem[lid] = sum = sum + lmem[lid+ 1];} \n" <<
|
|
"}\n";
|
|
return k.str();
|
|
}
|
|
};
|
|
|
|
template<class InputIterator, class Function>
|
|
inline void initial_reduce(InputIterator first,
|
|
InputIterator last,
|
|
buffer result,
|
|
const Function &function,
|
|
kernel &reduce_kernel,
|
|
const uint_ vpt,
|
|
const uint_ tpb,
|
|
command_queue &queue)
|
|
{
|
|
(void) function;
|
|
(void) reduce_kernel;
|
|
|
|
typedef typename std::iterator_traits<InputIterator>::value_type Arg;
|
|
typedef typename boost::tr1_result_of<Function(Arg, Arg)>::type T;
|
|
|
|
size_t count = std::distance(first, last);
|
|
detail::meta_kernel k("initial_reduce");
|
|
k.add_set_arg<const uint_>("count", uint_(count));
|
|
size_t output_arg = k.add_arg<T *>(memory_object::global_memory, "output");
|
|
|
|
k <<
|
|
k.decl<const uint_>("offset") << " = get_group_id(0) * VPT * TPB;\n" <<
|
|
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
|
|
|
|
"__local " << type_name<T>() << " scratch[TPB];\n" <<
|
|
|
|
// private reduction
|
|
k.decl<T>("sum") << " = 0;\n" <<
|
|
"for(uint i = 0; i < VPT; i++){\n" <<
|
|
" if(offset + lid + i*TPB < count){\n" <<
|
|
" sum = sum + " << first[k.var<uint_>("offset+lid+i*TPB")] << ";\n" <<
|
|
" }\n" <<
|
|
"}\n" <<
|
|
|
|
"scratch[lid] = sum;\n" <<
|
|
|
|
// local reduction
|
|
ReduceBody<T,false>::body() <<
|
|
|
|
// write sum to output
|
|
"if(lid == 0){\n" <<
|
|
" output[get_group_id(0)] = scratch[0];\n" <<
|
|
"}\n";
|
|
|
|
const context &context = queue.get_context();
|
|
std::stringstream options;
|
|
options << "-DVPT=" << vpt << " -DTPB=" << tpb;
|
|
kernel generic_reduce_kernel = k.compile(context, options.str());
|
|
generic_reduce_kernel.set_arg(output_arg, result);
|
|
|
|
size_t work_size = calculate_work_size(count, vpt, tpb);
|
|
|
|
queue.enqueue_1d_range_kernel(generic_reduce_kernel, 0, work_size, tpb);
|
|
}
|
|
|
|
template<class T>
|
|
inline void initial_reduce(const buffer_iterator<T> &first,
|
|
const buffer_iterator<T> &last,
|
|
const buffer &result,
|
|
const plus<T> &function,
|
|
kernel &reduce_kernel,
|
|
const uint_ vpt,
|
|
const uint_ tpb,
|
|
command_queue &queue)
|
|
{
|
|
(void) function;
|
|
|
|
size_t count = std::distance(first, last);
|
|
|
|
reduce_kernel.set_arg(0, first.get_buffer());
|
|
reduce_kernel.set_arg(1, uint_(first.get_index()));
|
|
reduce_kernel.set_arg(2, uint_(count));
|
|
reduce_kernel.set_arg(3, result);
|
|
reduce_kernel.set_arg(4, uint_(0));
|
|
|
|
size_t work_size = calculate_work_size(count, vpt, tpb);
|
|
|
|
queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
|
|
}
|
|
|
|
template<class InputIterator, class T, class Function>
|
|
inline void reduce_on_gpu(InputIterator first,
|
|
InputIterator last,
|
|
buffer_iterator<T> result,
|
|
Function function,
|
|
command_queue &queue)
|
|
{
|
|
const device &device = queue.get_device();
|
|
const context &context = queue.get_context();
|
|
|
|
detail::meta_kernel k("reduce");
|
|
k.add_arg<const T*>(memory_object::global_memory, "input");
|
|
k.add_arg<const uint_>("offset");
|
|
k.add_arg<const uint_>("count");
|
|
k.add_arg<T*>(memory_object::global_memory, "output");
|
|
k.add_arg<const uint_>("output_offset");
|
|
|
|
k <<
|
|
k.decl<const uint_>("block_offset") << " = get_group_id(0) * VPT * TPB;\n" <<
|
|
"__global const " << type_name<T>() << " *block = input + offset + block_offset;\n" <<
|
|
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
|
|
|
|
"__local " << type_name<T>() << " scratch[TPB];\n" <<
|
|
// private reduction
|
|
k.decl<T>("sum") << " = 0;\n" <<
|
|
"for(uint i = 0; i < VPT; i++){\n" <<
|
|
" if(block_offset + lid + i*TPB < count){\n" <<
|
|
" sum = sum + block[lid+i*TPB]; \n" <<
|
|
" }\n" <<
|
|
"}\n" <<
|
|
|
|
"scratch[lid] = sum;\n";
|
|
|
|
// discrimination on vendor name
|
|
if(is_nvidia_device(device))
|
|
k << ReduceBody<T,true>::body();
|
|
else
|
|
k << ReduceBody<T,false>::body();
|
|
|
|
k <<
|
|
// write sum to output
|
|
"if(lid == 0){\n" <<
|
|
" output[output_offset + get_group_id(0)] = scratch[0];\n" <<
|
|
"}\n";
|
|
|
|
std::string cache_key = std::string("__boost_reduce_on_gpu_") + type_name<T>();
|
|
|
|
// load parameters
|
|
boost::shared_ptr<parameter_cache> parameters =
|
|
detail::parameter_cache::get_global_cache(device);
|
|
|
|
uint_ vpt = parameters->get(cache_key, "vpt", 8);
|
|
uint_ tpb = parameters->get(cache_key, "tpb", 128);
|
|
|
|
// reduce program compiler flags
|
|
std::stringstream options;
|
|
options << "-DT=" << type_name<T>()
|
|
<< " -DVPT=" << vpt
|
|
<< " -DTPB=" << tpb;
|
|
|
|
// load program
|
|
boost::shared_ptr<program_cache> cache =
|
|
program_cache::get_global_cache(context);
|
|
|
|
program reduce_program = cache->get_or_build(
|
|
cache_key, options.str(), k.source(), context
|
|
);
|
|
|
|
// create reduce kernel
|
|
kernel reduce_kernel(reduce_program, "reduce");
|
|
|
|
size_t count = std::distance(first, last);
|
|
|
|
// first pass, reduce from input to ping
|
|
buffer ping(context, std::ceil(float(count) / vpt / tpb) * sizeof(T));
|
|
initial_reduce(first, last, ping, function, reduce_kernel, vpt, tpb, queue);
|
|
|
|
// update count after initial reduce
|
|
count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
|
|
|
|
// middle pass(es), reduce between ping and pong
|
|
const buffer *input_buffer = &ping;
|
|
buffer pong(context, static_cast<size_t>(count / vpt / tpb * sizeof(T)));
|
|
const buffer *output_buffer = &pong;
|
|
if(count > vpt * tpb){
|
|
while(count > vpt * tpb){
|
|
reduce_kernel.set_arg(0, *input_buffer);
|
|
reduce_kernel.set_arg(1, uint_(0));
|
|
reduce_kernel.set_arg(2, uint_(count));
|
|
reduce_kernel.set_arg(3, *output_buffer);
|
|
reduce_kernel.set_arg(4, uint_(0));
|
|
|
|
size_t work_size = static_cast<size_t>(std::ceil(float(count) / vpt));
|
|
if(work_size % tpb != 0){
|
|
work_size += tpb - work_size % tpb;
|
|
}
|
|
queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
|
|
|
|
std::swap(input_buffer, output_buffer);
|
|
count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
|
|
}
|
|
}
|
|
|
|
// final pass, reduce from ping/pong to result
|
|
reduce_kernel.set_arg(0, *input_buffer);
|
|
reduce_kernel.set_arg(1, uint_(0));
|
|
reduce_kernel.set_arg(2, uint_(count));
|
|
reduce_kernel.set_arg(3, result.get_buffer());
|
|
reduce_kernel.set_arg(4, uint_(result.get_index()));
|
|
|
|
queue.enqueue_1d_range_kernel(reduce_kernel, 0, tpb, tpb);
|
|
}
|
|
|
|
} // end detail namespace
|
|
} // end compute namespace
|
|
} // end boost namespace
|
|
|
|
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
|