js8call/.svn/pristine/5c/5cdf9c8e70d434c7620bc53c5fa7c41cac8041c7.svn-base
2018-02-08 21:28:33 -05:00

287 lines
10 KiB
Plaintext

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP
#include <iterator>
#include <boost/compute/utility/source.hpp>
#include <boost/compute/program.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/detail/vendor.hpp>
#include <boost/compute/detail/parameter_cache.hpp>
#include <boost/compute/detail/work_size.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/type_traits/type_name.hpp>
#include <boost/compute/utility/program_cache.hpp>
namespace boost {
namespace compute {
namespace detail {
/// \internal
/// body reduction inside a warp
template<typename T,bool isNvidiaDevice>
struct ReduceBody
{
static std::string body()
{
std::stringstream k;
// local reduction
k << "for(int i = 1; i < TPB; i <<= 1){\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" uint mask = (i << 1) - 1;\n" <<
" if((lid & mask) == 0){\n" <<
" scratch[lid] += scratch[lid+i];\n" <<
" }\n" <<
"}\n";
return k.str();
}
};
/// \internal
/// body reduction inside a warp
/// for nvidia device we can use the "unsafe"
/// memory optimisation
template<typename T>
struct ReduceBody<T,true>
{
static std::string body()
{
std::stringstream k;
// local reduction
// we use TPB to compile only useful instruction
// local reduction when size is greater than warp size
k << "barrier(CLK_LOCAL_MEM_FENCE);\n" <<
"if(TPB >= 1024){\n" <<
"if(lid < 512) { sum += scratch[lid + 512]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
"if(TPB >= 512){\n" <<
"if(lid < 256) { sum += scratch[lid + 256]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
"if(TPB >= 256){\n" <<
"if(lid < 128) { sum += scratch[lid + 128]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);}\n" <<
"if(TPB >= 128){\n" <<
"if(lid < 64) { sum += scratch[lid + 64]; scratch[lid] = sum;} barrier(CLK_LOCAL_MEM_FENCE);} \n" <<
// warp reduction
"if(lid < 32){\n" <<
// volatile this way we don't need any barrier
"volatile __local " << type_name<T>() << " *lmem = scratch;\n" <<
"if(TPB >= 64) { lmem[lid] = sum = sum + lmem[lid+32];} \n" <<
"if(TPB >= 32) { lmem[lid] = sum = sum + lmem[lid+16];} \n" <<
"if(TPB >= 16) { lmem[lid] = sum = sum + lmem[lid+ 8];} \n" <<
"if(TPB >= 8) { lmem[lid] = sum = sum + lmem[lid+ 4];} \n" <<
"if(TPB >= 4) { lmem[lid] = sum = sum + lmem[lid+ 2];} \n" <<
"if(TPB >= 2) { lmem[lid] = sum = sum + lmem[lid+ 1];} \n" <<
"}\n";
return k.str();
}
};
template<class InputIterator, class Function>
inline void initial_reduce(InputIterator first,
InputIterator last,
buffer result,
const Function &function,
kernel &reduce_kernel,
const uint_ vpt,
const uint_ tpb,
command_queue &queue)
{
(void) function;
(void) reduce_kernel;
typedef typename std::iterator_traits<InputIterator>::value_type Arg;
typedef typename boost::tr1_result_of<Function(Arg, Arg)>::type T;
size_t count = std::distance(first, last);
detail::meta_kernel k("initial_reduce");
k.add_set_arg<const uint_>("count", uint_(count));
size_t output_arg = k.add_arg<T *>(memory_object::global_memory, "output");
k <<
k.decl<const uint_>("offset") << " = get_group_id(0) * VPT * TPB;\n" <<
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
"__local " << type_name<T>() << " scratch[TPB];\n" <<
// private reduction
k.decl<T>("sum") << " = 0;\n" <<
"for(uint i = 0; i < VPT; i++){\n" <<
" if(offset + lid + i*TPB < count){\n" <<
" sum = sum + " << first[k.var<uint_>("offset+lid+i*TPB")] << ";\n" <<
" }\n" <<
"}\n" <<
"scratch[lid] = sum;\n" <<
// local reduction
ReduceBody<T,false>::body() <<
// write sum to output
"if(lid == 0){\n" <<
" output[get_group_id(0)] = scratch[0];\n" <<
"}\n";
const context &context = queue.get_context();
std::stringstream options;
options << "-DVPT=" << vpt << " -DTPB=" << tpb;
kernel generic_reduce_kernel = k.compile(context, options.str());
generic_reduce_kernel.set_arg(output_arg, result);
size_t work_size = calculate_work_size(count, vpt, tpb);
queue.enqueue_1d_range_kernel(generic_reduce_kernel, 0, work_size, tpb);
}
template<class T>
inline void initial_reduce(const buffer_iterator<T> &first,
const buffer_iterator<T> &last,
const buffer &result,
const plus<T> &function,
kernel &reduce_kernel,
const uint_ vpt,
const uint_ tpb,
command_queue &queue)
{
(void) function;
size_t count = std::distance(first, last);
reduce_kernel.set_arg(0, first.get_buffer());
reduce_kernel.set_arg(1, uint_(first.get_index()));
reduce_kernel.set_arg(2, uint_(count));
reduce_kernel.set_arg(3, result);
reduce_kernel.set_arg(4, uint_(0));
size_t work_size = calculate_work_size(count, vpt, tpb);
queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
}
template<class InputIterator, class T, class Function>
inline void reduce_on_gpu(InputIterator first,
InputIterator last,
buffer_iterator<T> result,
Function function,
command_queue &queue)
{
const device &device = queue.get_device();
const context &context = queue.get_context();
detail::meta_kernel k("reduce");
k.add_arg<const T*>(memory_object::global_memory, "input");
k.add_arg<const uint_>("offset");
k.add_arg<const uint_>("count");
k.add_arg<T*>(memory_object::global_memory, "output");
k.add_arg<const uint_>("output_offset");
k <<
k.decl<const uint_>("block_offset") << " = get_group_id(0) * VPT * TPB;\n" <<
"__global const " << type_name<T>() << " *block = input + offset + block_offset;\n" <<
k.decl<const uint_>("lid") << " = get_local_id(0);\n" <<
"__local " << type_name<T>() << " scratch[TPB];\n" <<
// private reduction
k.decl<T>("sum") << " = 0;\n" <<
"for(uint i = 0; i < VPT; i++){\n" <<
" if(block_offset + lid + i*TPB < count){\n" <<
" sum = sum + block[lid+i*TPB]; \n" <<
" }\n" <<
"}\n" <<
"scratch[lid] = sum;\n";
// discrimination on vendor name
if(is_nvidia_device(device))
k << ReduceBody<T,true>::body();
else
k << ReduceBody<T,false>::body();
k <<
// write sum to output
"if(lid == 0){\n" <<
" output[output_offset + get_group_id(0)] = scratch[0];\n" <<
"}\n";
std::string cache_key = std::string("__boost_reduce_on_gpu_") + type_name<T>();
// load parameters
boost::shared_ptr<parameter_cache> parameters =
detail::parameter_cache::get_global_cache(device);
uint_ vpt = parameters->get(cache_key, "vpt", 8);
uint_ tpb = parameters->get(cache_key, "tpb", 128);
// reduce program compiler flags
std::stringstream options;
options << "-DT=" << type_name<T>()
<< " -DVPT=" << vpt
<< " -DTPB=" << tpb;
// load program
boost::shared_ptr<program_cache> cache =
program_cache::get_global_cache(context);
program reduce_program = cache->get_or_build(
cache_key, options.str(), k.source(), context
);
// create reduce kernel
kernel reduce_kernel(reduce_program, "reduce");
size_t count = std::distance(first, last);
// first pass, reduce from input to ping
buffer ping(context, std::ceil(float(count) / vpt / tpb) * sizeof(T));
initial_reduce(first, last, ping, function, reduce_kernel, vpt, tpb, queue);
// update count after initial reduce
count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
// middle pass(es), reduce between ping and pong
const buffer *input_buffer = &ping;
buffer pong(context, static_cast<size_t>(count / vpt / tpb * sizeof(T)));
const buffer *output_buffer = &pong;
if(count > vpt * tpb){
while(count > vpt * tpb){
reduce_kernel.set_arg(0, *input_buffer);
reduce_kernel.set_arg(1, uint_(0));
reduce_kernel.set_arg(2, uint_(count));
reduce_kernel.set_arg(3, *output_buffer);
reduce_kernel.set_arg(4, uint_(0));
size_t work_size = static_cast<size_t>(std::ceil(float(count) / vpt));
if(work_size % tpb != 0){
work_size += tpb - work_size % tpb;
}
queue.enqueue_1d_range_kernel(reduce_kernel, 0, work_size, tpb);
std::swap(input_buffer, output_buffer);
count = static_cast<size_t>(std::ceil(float(count) / vpt / tpb));
}
}
// final pass, reduce from ping/pong to result
reduce_kernel.set_arg(0, *input_buffer);
reduce_kernel.set_arg(1, uint_(0));
reduce_kernel.set_arg(2, uint_(count));
reduce_kernel.set_arg(3, result.get_buffer());
reduce_kernel.set_arg(4, uint_(result.get_index()));
queue.enqueue_1d_range_kernel(reduce_kernel, 0, tpb, tpb);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_REDUCE_ON_GPU_HPP