751 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			751 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| 
 | |
| // Copyright Christopher Kormanyos 2002 - 2013.
 | |
| // Copyright 2011 - 2013 John Maddock. Distributed under the Boost
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| //    (See accompanying file LICENSE_1_0.txt or copy at
 | |
| //          http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // This work is based on an earlier work:
 | |
| // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
 | |
| // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
 | |
| //
 | |
| // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
 | |
| // 
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:6326)  // comparison of two constants
 | |
| #endif
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
| template<typename T, typename U> 
 | |
| inline void pow_imp(T& result, const T& t, const U& p, const mpl::false_&)
 | |
| {
 | |
|    // Compute the pure power of typename T t^p.
 | |
|    // Use the S-and-X binary method, as described in
 | |
|    // D. E. Knuth, "The Art of Computer Programming", Vol. 2,
 | |
|    // Section 4.6.3 . The resulting computational complexity
 | |
|    // is order log2[abs(p)].
 | |
| 
 | |
|    typedef typename boost::multiprecision::detail::canonical<U, T>::type int_type;
 | |
| 
 | |
|    if(&result == &t)
 | |
|    {
 | |
|       T temp;
 | |
|       pow_imp(temp, t, p, mpl::false_());
 | |
|       result = temp;
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    // This will store the result.
 | |
|    if(U(p % U(2)) != U(0))
 | |
|    {
 | |
|       result = t;
 | |
|    }
 | |
|    else
 | |
|       result = int_type(1);
 | |
| 
 | |
|    U p2(p);
 | |
| 
 | |
|    // The variable x stores the binary powers of t.
 | |
|    T x(t);
 | |
| 
 | |
|    while(U(p2 /= 2) != U(0))
 | |
|    {
 | |
|       // Square x for each binary power.
 | |
|       eval_multiply(x, x);
 | |
| 
 | |
|       const bool has_binary_power = (U(p2 % U(2)) != U(0));
 | |
| 
 | |
|       if(has_binary_power)
 | |
|       {
 | |
|          // Multiply the result with each binary power contained in the exponent.
 | |
|          eval_multiply(result, x);
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| template<typename T, typename U> 
 | |
| inline void pow_imp(T& result, const T& t, const U& p, const mpl::true_&)
 | |
| {
 | |
|    // Signed integer power, just take care of the sign then call the unsigned version:
 | |
|    typedef typename boost::multiprecision::detail::canonical<U, T>::type  int_type;
 | |
|    typedef typename make_unsigned<U>::type                                ui_type;
 | |
| 
 | |
|    if(p < 0)
 | |
|    {
 | |
|       T temp;
 | |
|       temp = static_cast<int_type>(1);
 | |
|       T denom;
 | |
|       pow_imp(denom, t, static_cast<ui_type>(-p), mpl::false_());
 | |
|       eval_divide(result, temp, denom);
 | |
|       return;
 | |
|    }
 | |
|    pow_imp(result, t, static_cast<ui_type>(p), mpl::false_());
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| template<typename T, typename U> 
 | |
| inline typename enable_if<is_integral<U> >::type eval_pow(T& result, const T& t, const U& p)
 | |
| {
 | |
|    detail::pow_imp(result, t, p, boost::is_signed<U>());
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void hyp0F0(T& H0F0, const T& x)
 | |
| {
 | |
|    // Compute the series representation of Hypergeometric0F0 taken from
 | |
|    // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F0/06/01/
 | |
|    // There are no checks on input range or parameter boundaries.
 | |
| 
 | |
|    typedef typename mpl::front<typename T::unsigned_types>::type ui_type;
 | |
| 
 | |
|    BOOST_ASSERT(&H0F0 != &x);
 | |
|    long tol = boost::multiprecision::detail::digits2<number<T, et_on> >::value();
 | |
|    T t;
 | |
| 
 | |
|    T x_pow_n_div_n_fact(x);
 | |
| 
 | |
|    eval_add(H0F0, x_pow_n_div_n_fact, ui_type(1));
 | |
| 
 | |
|    T lim;
 | |
|    eval_ldexp(lim, H0F0, 1 - tol);
 | |
|    if(eval_get_sign(lim) < 0)
 | |
|       lim.negate();
 | |
| 
 | |
|    ui_type n;
 | |
| 
 | |
|    const unsigned series_limit = 
 | |
|       boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
 | |
|       ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
 | |
|    // Series expansion of hyperg_0f0(; ; x).
 | |
|    for(n = 2; n < series_limit; ++n)
 | |
|    {
 | |
|       eval_multiply(x_pow_n_div_n_fact, x);
 | |
|       eval_divide(x_pow_n_div_n_fact, n);
 | |
|       eval_add(H0F0, x_pow_n_div_n_fact);
 | |
|       bool neg = eval_get_sign(x_pow_n_div_n_fact) < 0;
 | |
|       if(neg)
 | |
|          x_pow_n_div_n_fact.negate();
 | |
|       if(lim.compare(x_pow_n_div_n_fact) > 0)
 | |
|          break;
 | |
|       if(neg)
 | |
|          x_pow_n_div_n_fact.negate();
 | |
|    }
 | |
|    if(n >= series_limit)
 | |
|       BOOST_THROW_EXCEPTION(std::runtime_error("H0F0 failed to converge"));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void hyp1F0(T& H1F0, const T& a, const T& x)
 | |
| {
 | |
|    // Compute the series representation of Hypergeometric1F0 taken from
 | |
|    // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F0/06/01/01/
 | |
|    // and also see the corresponding section for the power function (i.e. x^a).
 | |
|    // There are no checks on input range or parameter boundaries.
 | |
| 
 | |
|    typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
 | |
| 
 | |
|    BOOST_ASSERT(&H1F0 != &x);
 | |
|    BOOST_ASSERT(&H1F0 != &a);
 | |
| 
 | |
|    T x_pow_n_div_n_fact(x);
 | |
|    T pochham_a         (a);
 | |
|    T ap                (a);
 | |
| 
 | |
|    eval_multiply(H1F0, pochham_a, x_pow_n_div_n_fact);
 | |
|    eval_add(H1F0, si_type(1));
 | |
|    T lim;
 | |
|    eval_ldexp(lim, H1F0, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | |
|    if(eval_get_sign(lim) < 0)
 | |
|       lim.negate();
 | |
| 
 | |
|    si_type n;
 | |
|    T term, part;
 | |
| 
 | |
|    const si_type series_limit =
 | |
|       boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
 | |
|       ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
 | |
|    // Series expansion of hyperg_1f0(a; ; x).
 | |
|    for(n = 2; n < series_limit; n++)
 | |
|    {
 | |
|       eval_multiply(x_pow_n_div_n_fact, x);
 | |
|       eval_divide(x_pow_n_div_n_fact, n);
 | |
|       eval_increment(ap);
 | |
|       eval_multiply(pochham_a, ap);
 | |
|       eval_multiply(term, pochham_a, x_pow_n_div_n_fact);
 | |
|       eval_add(H1F0, term);
 | |
|       if(eval_get_sign(term) < 0)
 | |
|          term.negate();
 | |
|       if(lim.compare(term) >= 0)
 | |
|          break;
 | |
|    }
 | |
|    if(n >= series_limit)
 | |
|       BOOST_THROW_EXCEPTION(std::runtime_error("H1F0 failed to converge"));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void eval_exp(T& result, const T& x)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The exp function is only valid for floating point types.");
 | |
|    if(&x == &result)
 | |
|    {
 | |
|       T temp;
 | |
|       eval_exp(temp, x);
 | |
|       result = temp;
 | |
|       return;
 | |
|    }
 | |
|    typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
 | |
|    typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
 | |
|    typedef typename T::exponent_type exp_type;
 | |
|    typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
 | |
| 
 | |
|    // Handle special arguments.
 | |
|    int type = eval_fpclassify(x);
 | |
|    bool isneg = eval_get_sign(x) < 0;
 | |
|    if(type == (int)FP_NAN)
 | |
|    {
 | |
|       result = x;
 | |
|       return;
 | |
|    }
 | |
|    else if(type == (int)FP_INFINITE)
 | |
|    {
 | |
|       result = x;
 | |
|       if(isneg)
 | |
|          result = ui_type(0u);
 | |
|       else 
 | |
|          result = x;
 | |
|       return;
 | |
|    }
 | |
|    else if(type == (int)FP_ZERO)
 | |
|    {
 | |
|       result = ui_type(1);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    // Get local copy of argument and force it to be positive.
 | |
|    T xx = x;
 | |
|    T exp_series;
 | |
|    if(isneg)
 | |
|       xx.negate();
 | |
| 
 | |
|    // Check the range of the argument.
 | |
|    if(xx.compare(si_type(1)) <= 0)
 | |
|    {
 | |
|       //
 | |
|       // Use series for exp(x) - 1:
 | |
|       //
 | |
|       T lim;
 | |
|       if(std::numeric_limits<number<T, et_on> >::is_specialized)
 | |
|          lim = std::numeric_limits<number<T, et_on> >::epsilon().backend();
 | |
|       else
 | |
|       {
 | |
|          result = ui_type(1);
 | |
|          eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | |
|       }
 | |
|       unsigned k = 2;
 | |
|       exp_series = xx;
 | |
|       result = si_type(1);
 | |
|       if(isneg)
 | |
|          eval_subtract(result, exp_series);
 | |
|       else
 | |
|          eval_add(result, exp_series);
 | |
|       eval_multiply(exp_series, xx);
 | |
|       eval_divide(exp_series, ui_type(k));
 | |
|       eval_add(result, exp_series);
 | |
|       while(exp_series.compare(lim) > 0)
 | |
|       {
 | |
|          ++k;
 | |
|          eval_multiply(exp_series, xx);
 | |
|          eval_divide(exp_series, ui_type(k));
 | |
|          if(isneg && (k&1))
 | |
|             eval_subtract(result, exp_series);
 | |
|          else
 | |
|             eval_add(result, exp_series);
 | |
|       }
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    // Check for pure-integer arguments which can be either signed or unsigned.
 | |
|    typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type ll;
 | |
|    eval_trunc(exp_series, x);
 | |
|    eval_convert_to(&ll, exp_series);
 | |
|    if(x.compare(ll) == 0)
 | |
|    {
 | |
|       detail::pow_imp(result, get_constant_e<T>(), ll, mpl::true_());
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    // The algorithm for exp has been taken from MPFUN.
 | |
|    // exp(t) = [ (1 + r + r^2/2! + r^3/3! + r^4/4! ...)^p2 ] * 2^n
 | |
|    // where p2 is a power of 2 such as 2048, r = t_prime / p2, and
 | |
|    // t_prime = t - n*ln2, with n chosen to minimize the absolute
 | |
|    // value of t_prime. In the resulting Taylor series, which is
 | |
|    // implemented as a hypergeometric function, |r| is bounded by
 | |
|    // ln2 / p2. For small arguments, no scaling is done.
 | |
| 
 | |
|    // Compute the exponential series of the (possibly) scaled argument.
 | |
| 
 | |
|    eval_divide(result, xx, get_constant_ln2<T>());
 | |
|    exp_type n;
 | |
|    eval_convert_to(&n, result);
 | |
| 
 | |
|    // The scaling is 2^11 = 2048.
 | |
|    const si_type p2 = static_cast<si_type>(si_type(1) << 11);
 | |
| 
 | |
|    eval_multiply(exp_series, get_constant_ln2<T>(), static_cast<canonical_exp_type>(n));
 | |
|    eval_subtract(exp_series, xx);
 | |
|    eval_divide(exp_series, p2);
 | |
|    exp_series.negate();
 | |
|    hyp0F0(result, exp_series);
 | |
| 
 | |
|    detail::pow_imp(exp_series, result, p2, mpl::true_());
 | |
|    result = ui_type(1);
 | |
|    eval_ldexp(result, result, n);
 | |
|    eval_multiply(exp_series, result);
 | |
| 
 | |
|    if(isneg)
 | |
|       eval_divide(result, ui_type(1), exp_series);
 | |
|    else
 | |
|       result = exp_series;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void eval_log(T& result, const T& arg)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");
 | |
|    //
 | |
|    // We use a variation of http://dlmf.nist.gov/4.45#i
 | |
|    // using frexp to reduce the argument to x * 2^n,
 | |
|    // then let y = x - 1 and compute:
 | |
|    // log(x) = log(2) * n + log1p(1 + y)
 | |
|    //
 | |
|    typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
 | |
|    typedef typename T::exponent_type exp_type;
 | |
|    typedef typename boost::multiprecision::detail::canonical<exp_type, T>::type canonical_exp_type;
 | |
|    typedef typename mpl::front<typename T::float_types>::type fp_type;
 | |
| 
 | |
|    exp_type e;
 | |
|    T t;
 | |
|    eval_frexp(t, arg, &e);
 | |
|    bool alternate = false;
 | |
| 
 | |
|    if(t.compare(fp_type(2) / fp_type(3)) <= 0)
 | |
|    {
 | |
|       alternate = true;
 | |
|       eval_ldexp(t, t, 1);
 | |
|       --e;
 | |
|    }
 | |
|    
 | |
|    eval_multiply(result, get_constant_ln2<T>(), canonical_exp_type(e));
 | |
|    INSTRUMENT_BACKEND(result);
 | |
|    eval_subtract(t, ui_type(1)); /* -0.3 <= t <= 0.3 */
 | |
|    if(!alternate)
 | |
|       t.negate(); /* 0 <= t <= 0.33333 */
 | |
|    T pow = t;
 | |
|    T lim;
 | |
|    T t2;
 | |
| 
 | |
|    if(alternate)
 | |
|       eval_add(result, t);
 | |
|    else
 | |
|       eval_subtract(result, t);
 | |
| 
 | |
|    if(std::numeric_limits<number<T, et_on> >::is_specialized)
 | |
|       eval_multiply(lim, result, std::numeric_limits<number<T, et_on> >::epsilon().backend());
 | |
|    else
 | |
|       eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | |
|    if(eval_get_sign(lim) < 0)
 | |
|       lim.negate();
 | |
|    INSTRUMENT_BACKEND(lim);
 | |
| 
 | |
|    ui_type k = 1;
 | |
|    do
 | |
|    {
 | |
|       ++k;
 | |
|       eval_multiply(pow, t);
 | |
|       eval_divide(t2, pow, k);
 | |
|       INSTRUMENT_BACKEND(t2);
 | |
|       if(alternate && ((k & 1) != 0))
 | |
|          eval_add(result, t2);
 | |
|       else
 | |
|          eval_subtract(result, t2);
 | |
|       INSTRUMENT_BACKEND(result);
 | |
|    }while(lim.compare(t2) < 0);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| const T& get_constant_log10()
 | |
| {
 | |
|    static BOOST_MP_THREAD_LOCAL T result;
 | |
|    static BOOST_MP_THREAD_LOCAL bool b = false;
 | |
|    static BOOST_MP_THREAD_LOCAL long digits = boost::multiprecision::detail::digits2<number<T> >::value();
 | |
|    if(!b || (digits != boost::multiprecision::detail::digits2<number<T> >::value()))
 | |
|    {
 | |
|       typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
 | |
|       T ten;
 | |
|       ten = ui_type(10u);
 | |
|       eval_log(result, ten);
 | |
|       b = true;
 | |
|       digits = boost::multiprecision::detail::digits2<number<T> >::value();
 | |
|    }
 | |
| 
 | |
|    constant_initializer<T, &get_constant_log10<T> >::do_nothing();
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void eval_log10(T& result, const T& arg)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log10 function is only valid for floating point types.");
 | |
|    eval_log(result, arg);
 | |
|    eval_divide(result, get_constant_log10<T>());
 | |
| }
 | |
| 
 | |
| template <class R, class T>
 | |
| inline void eval_log2(R& result, const T& a)
 | |
| {
 | |
|    eval_log(result, a);
 | |
|    eval_divide(result, get_constant_ln2<R>());
 | |
| }
 | |
| 
 | |
| template<typename T> 
 | |
| inline void eval_pow(T& result, const T& x, const T& a)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The pow function is only valid for floating point types.");
 | |
|    typedef typename boost::multiprecision::detail::canonical<int, T>::type si_type;
 | |
|    typedef typename mpl::front<typename T::float_types>::type fp_type;
 | |
| 
 | |
|    if((&result == &x) || (&result == &a))
 | |
|    {
 | |
|       T t;
 | |
|       eval_pow(t, x, a);
 | |
|       result = t;
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    if(a.compare(si_type(1)) == 0)
 | |
|    {
 | |
|       result = x;
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    int type = eval_fpclassify(x);
 | |
| 
 | |
|    switch(type)
 | |
|    {
 | |
|    case FP_INFINITE:
 | |
|       result = x;
 | |
|       return;
 | |
|    case FP_ZERO:
 | |
|       switch(eval_fpclassify(a))
 | |
|       {
 | |
|       case FP_ZERO:
 | |
|          result = si_type(1);
 | |
|          break;
 | |
|       case FP_NAN:
 | |
|          result = a;
 | |
|          break;
 | |
|       default:
 | |
|          result = x;
 | |
|          break;
 | |
|       }
 | |
|       return;
 | |
|    case FP_NAN:
 | |
|       result = x;
 | |
|       return;
 | |
|    default: ;
 | |
|    }
 | |
| 
 | |
|    int s = eval_get_sign(a);
 | |
|    if(s == 0)
 | |
|    {
 | |
|       result = si_type(1);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    if(s < 0)
 | |
|    {
 | |
|       T t, da;
 | |
|       t = a;
 | |
|       t.negate();
 | |
|       eval_pow(da, x, t);
 | |
|       eval_divide(result, si_type(1), da);
 | |
|       return;
 | |
|    }
 | |
|    
 | |
|    typename boost::multiprecision::detail::canonical<boost::intmax_t, T>::type an;
 | |
|    T fa;
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|    try
 | |
|    {
 | |
| #endif
 | |
|       eval_convert_to(&an, a);
 | |
|       if(a.compare(an) == 0)
 | |
|       {
 | |
|          detail::pow_imp(result, x, an, mpl::true_());
 | |
|          return;
 | |
|       }
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|    }
 | |
|    catch(const std::exception&)
 | |
|    {
 | |
|       // conversion failed, just fall through, value is not an integer.
 | |
|       an = (std::numeric_limits<boost::intmax_t>::max)();
 | |
|    }
 | |
| #endif
 | |
|    if((eval_get_sign(x) < 0))
 | |
|    {
 | |
|       typename boost::multiprecision::detail::canonical<boost::uintmax_t, T>::type aun;
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|       try
 | |
|       {
 | |
| #endif
 | |
|          eval_convert_to(&aun, a);
 | |
|          if(a.compare(aun) == 0)
 | |
|          {
 | |
|             fa = x;
 | |
|             fa.negate();
 | |
|             eval_pow(result, fa, a);
 | |
|             if(aun & 1u)
 | |
|                result.negate();
 | |
|             return;
 | |
|          }
 | |
| #ifndef BOOST_NO_EXCEPTIONS
 | |
|       }
 | |
|       catch(const std::exception&)
 | |
|       {
 | |
|          // conversion failed, just fall through, value is not an integer.
 | |
|       }
 | |
| #endif
 | |
|       if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
 | |
|          result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
 | |
|       else
 | |
|       {
 | |
|          BOOST_THROW_EXCEPTION(std::domain_error("Result of pow is undefined or non-real and there is no NaN for this number type."));
 | |
|       }
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    T t, da;
 | |
| 
 | |
|    eval_subtract(da, a, an);
 | |
| 
 | |
|    if((x.compare(fp_type(0.5)) >= 0) && (x.compare(fp_type(0.9)) < 0))
 | |
|    {
 | |
|       if(a.compare(fp_type(1e-5f)) <= 0)
 | |
|       {
 | |
|          // Series expansion for small a.
 | |
|          eval_log(t, x);
 | |
|          eval_multiply(t, a);
 | |
|          hyp0F0(result, t);
 | |
|          return;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          // Series expansion for moderately sized x. Note that for large power of a,
 | |
|          // the power of the integer part of a is calculated using the pown function.
 | |
|          if(an)
 | |
|          {
 | |
|             da.negate();
 | |
|             t = si_type(1);
 | |
|             eval_subtract(t, x);
 | |
|             hyp1F0(result, da, t);
 | |
|             detail::pow_imp(t, x, an, mpl::true_());
 | |
|             eval_multiply(result, t);
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             da = a;
 | |
|             da.negate();
 | |
|             t = si_type(1);
 | |
|             eval_subtract(t, x);
 | |
|             hyp1F0(result, da, t);
 | |
|          }
 | |
|       }
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       // Series expansion for pow(x, a). Note that for large power of a, the power
 | |
|       // of the integer part of a is calculated using the pown function.
 | |
|       if(an)
 | |
|       {
 | |
|          eval_log(t, x);
 | |
|          eval_multiply(t, da);
 | |
|          eval_exp(result, t);
 | |
|          detail::pow_imp(t, x, an, mpl::true_());
 | |
|          eval_multiply(result, t);
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          eval_log(t, x);
 | |
|          eval_multiply(t, a);
 | |
|          eval_exp(result, t);
 | |
|       }
 | |
|    }
 | |
| }
 | |
| 
 | |
| template<class T, class A> 
 | |
| inline typename enable_if<is_floating_point<A>, void>::type eval_pow(T& result, const T& x, const A& a)
 | |
| {
 | |
|    // Note this one is restricted to float arguments since pow.hpp already has a version for
 | |
|    // integer powers....
 | |
|    typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
 | |
|    typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
 | |
|    cast_type c;
 | |
|    c = a;
 | |
|    eval_pow(result, x, c);
 | |
| }
 | |
| 
 | |
| template<class T, class A> 
 | |
| inline typename enable_if<is_arithmetic<A>, void>::type eval_pow(T& result, const A& x, const T& a)
 | |
| {
 | |
|    typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
 | |
|    typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
 | |
|    cast_type c;
 | |
|    c = x;
 | |
|    eval_pow(result, c, a);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void eval_exp2(T& result, const T& arg)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The log function is only valid for floating point types.");
 | |
| 
 | |
|    // Check for pure-integer arguments which can be either signed or unsigned.
 | |
|    typename boost::multiprecision::detail::canonical<typename T::exponent_type, T>::type i;
 | |
|    T temp;
 | |
|    eval_trunc(temp, arg);
 | |
|    eval_convert_to(&i, temp);
 | |
|    if(arg.compare(i) == 0)
 | |
|    {
 | |
|       temp = static_cast<typename mpl::front<typename T::unsigned_types>::type>(1u);
 | |
|       eval_ldexp(result, temp, i);
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    temp = static_cast<typename mpl::front<typename T::unsigned_types>::type>(2u);
 | |
|    eval_pow(result, temp, arg);
 | |
| }
 | |
| 
 | |
| namespace detail{
 | |
| 
 | |
|    template <class T>
 | |
|    void small_sinh_series(T x, T& result)
 | |
|    {
 | |
|       typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
 | |
|       bool neg = eval_get_sign(x) < 0;
 | |
|       if(neg)
 | |
|          x.negate();
 | |
|       T p(x);
 | |
|       T mult(x);
 | |
|       eval_multiply(mult, x);
 | |
|       result = x;
 | |
|       ui_type k = 1;
 | |
| 
 | |
|       T lim(x);
 | |
|       eval_ldexp(lim, lim, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
 | |
| 
 | |
|       do
 | |
|       {
 | |
|          eval_multiply(p, mult);
 | |
|          eval_divide(p, ++k);
 | |
|          eval_divide(p, ++k);
 | |
|          eval_add(result, p);
 | |
|       }while(p.compare(lim) >= 0);
 | |
|       if(neg)
 | |
|          result.negate();
 | |
|    }
 | |
| 
 | |
|    template <class T>
 | |
|    void sinhcosh(const T& x, T* p_sinh, T* p_cosh)
 | |
|    {
 | |
|       typedef typename boost::multiprecision::detail::canonical<unsigned, T>::type ui_type;
 | |
|       typedef typename mpl::front<typename T::float_types>::type fp_type;
 | |
| 
 | |
|       switch(eval_fpclassify(x))
 | |
|       {
 | |
|       case FP_NAN:
 | |
|       case FP_INFINITE:
 | |
|          if(p_sinh)
 | |
|             *p_sinh = x;
 | |
|          if(p_cosh)
 | |
|          {
 | |
|             *p_cosh = x;
 | |
|             if(eval_get_sign(x) < 0)
 | |
|                p_cosh->negate();
 | |
|          }
 | |
|          return;
 | |
|       case FP_ZERO:
 | |
|          if(p_sinh)
 | |
|             *p_sinh = x;
 | |
|          if(p_cosh)
 | |
|             *p_cosh = ui_type(1);
 | |
|          return;
 | |
|       default: ;
 | |
|       }
 | |
| 
 | |
|       bool small_sinh = eval_get_sign(x) < 0 ? x.compare(fp_type(-0.5)) > 0 : x.compare(fp_type(0.5)) < 0;
 | |
| 
 | |
|       if(p_cosh || !small_sinh)
 | |
|       {
 | |
|          T e_px, e_mx;
 | |
|          eval_exp(e_px, x);
 | |
|          eval_divide(e_mx, ui_type(1), e_px);
 | |
| 
 | |
|          if(p_sinh) 
 | |
|          { 
 | |
|             if(small_sinh)
 | |
|             {
 | |
|                small_sinh_series(x, *p_sinh);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                eval_subtract(*p_sinh, e_px, e_mx);
 | |
|                eval_ldexp(*p_sinh, *p_sinh, -1);
 | |
|             }
 | |
|          }
 | |
|          if(p_cosh) 
 | |
|          { 
 | |
|             eval_add(*p_cosh, e_px, e_mx);
 | |
|             eval_ldexp(*p_cosh, *p_cosh, -1); 
 | |
|          }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          small_sinh_series(x, *p_sinh);
 | |
|       }
 | |
|    }
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| template <class T>
 | |
| inline void eval_sinh(T& result, const T& x)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The sinh function is only valid for floating point types.");
 | |
|    detail::sinhcosh(x, &result, static_cast<T*>(0));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void eval_cosh(T& result, const T& x)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cosh function is only valid for floating point types.");
 | |
|    detail::sinhcosh(x, static_cast<T*>(0), &result);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline void eval_tanh(T& result, const T& x)
 | |
| {
 | |
|    BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tanh function is only valid for floating point types.");
 | |
|   T c;
 | |
|   detail::sinhcosh(x, &result, &c);
 | |
|   eval_divide(result, c);
 | |
| }
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | 
