831 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			831 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //
 | |
| //  Copyright (c) 2000-2002
 | |
| //  Joerg Walter, Mathias Koch
 | |
| //
 | |
| //  Distributed under the Boost Software License, Version 1.0. (See
 | |
| //  accompanying file LICENSE_1_0.txt or copy at
 | |
| //  http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| //  The authors gratefully acknowledge the support of
 | |
| //  GeNeSys mbH & Co. KG in producing this work.
 | |
| //
 | |
| 
 | |
| #ifndef _BOOST_UBLAS_OPERATION_
 | |
| #define _BOOST_UBLAS_OPERATION_
 | |
| 
 | |
| #include <boost/numeric/ublas/matrix_proxy.hpp>
 | |
| 
 | |
| /** \file operation.hpp
 | |
|  *  \brief This file contains some specialized products.
 | |
|  */
 | |
| 
 | |
| // axpy-based products
 | |
| // Alexei Novakov had a lot of ideas to improve these. Thanks.
 | |
| // Hendrik Kueck proposed some new kernel. Thanks again.
 | |
| 
 | |
| namespace boost { namespace numeric { namespace ublas {
 | |
| 
 | |
|     template<class V, class T1, class L1, class IA1, class TA1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, row_major_tag) {
 | |
|         typedef typename V::size_type size_type;
 | |
|         typedef typename V::value_type value_type;
 | |
| 
 | |
|         for (size_type i = 0; i < e1.filled1 () -1; ++ i) {
 | |
|             size_type begin = e1.index1_data () [i];
 | |
|             size_type end = e1.index1_data () [i + 1];
 | |
|             value_type t (v (i));
 | |
|             for (size_type j = begin; j < end; ++ j)
 | |
|                 t += e1.value_data () [j] * e2 () (e1.index2_data () [j]);
 | |
|             v (i) = t;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class T1, class L1, class IA1, class TA1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, column_major_tag) {
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         for (size_type j = 0; j < e1.filled1 () -1; ++ j) {
 | |
|             size_type begin = e1.index1_data () [j];
 | |
|             size_type end = e1.index1_data () [j + 1];
 | |
|             for (size_type i = begin; i < end; ++ i)
 | |
|                 v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j);
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class V, class T1, class L1, class IA1, class TA1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, bool init = true) {
 | |
|         typedef typename V::value_type value_type;
 | |
|         typedef typename L1::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             v.assign (zero_vector<value_type> (e1.size1 ()));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         vector<value_type> cv (v);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
 | |
| #endif
 | |
|         axpy_prod (e1, e2, v, orientation_category ());
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
 | |
| #endif
 | |
|         return v;
 | |
|     }
 | |
|     template<class V, class T1, class L1, class IA1, class TA1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V
 | |
|     axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
 | |
|                const vector_expression<E2> &e2) {
 | |
|         typedef V vector_type;
 | |
| 
 | |
|         vector_type v (e1.size1 ());
 | |
|         return axpy_prod (e1, e2, v, true);
 | |
|     }
 | |
| 
 | |
|     template<class V, class T1, class L1, class IA1, class TA1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, bool init = true) {
 | |
|         typedef typename V::size_type size_type;
 | |
|         typedef typename V::value_type value_type;
 | |
|         typedef L1 layout_type;
 | |
| 
 | |
|         size_type size1 = e1.size1();
 | |
|         size_type size2 = e1.size2();
 | |
| 
 | |
|         if (init) {
 | |
|             noalias(v) = zero_vector<value_type>(size1);
 | |
|         }
 | |
| 
 | |
|         for (size_type i = 0; i < e1.nnz(); ++i) {
 | |
|             size_type row_index = layout_type::index_M( e1.index1_data () [i], e1.index2_data () [i] );
 | |
|             size_type col_index = layout_type::index_m( e1.index1_data () [i], e1.index2_data () [i] );
 | |
|             v( row_index ) += e1.value_data () [i] * e2 () (col_index);
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag, row_major_tag) {
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
 | |
|         typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
 | |
|         while (it1 != it1_end) {
 | |
|             size_type index1 (it1.index1 ());
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression1_type::const_iterator2 it2 (it1.begin ());
 | |
|             typename expression1_type::const_iterator2 it2_end (it1.end ());
 | |
| #else
 | |
|             typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
 | |
|             typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
 | |
| #endif
 | |
|             while (it2 != it2_end) {
 | |
|                 v (index1) += *it2 * e2 () (it2.index2 ());
 | |
|                 ++ it2;
 | |
|             }
 | |
|             ++ it1;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag, column_major_tag) {
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         typename expression1_type::const_iterator2 it2 (e1 ().begin2 ());
 | |
|         typename expression1_type::const_iterator2 it2_end (e1 ().end2 ());
 | |
|         while (it2 != it2_end) {
 | |
|             size_type index2 (it2.index2 ());
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression1_type::const_iterator1 it1 (it2.begin ());
 | |
|             typename expression1_type::const_iterator1 it1_end (it2.end ());
 | |
| #else
 | |
|             typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
 | |
|             typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
 | |
| #endif
 | |
|             while (it1 != it1_end) {
 | |
|                 v (it1.index1 ()) += *it1 * e2 () (index2);
 | |
|                 ++ it1;
 | |
|             }
 | |
|             ++ it2;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, sparse_bidirectional_iterator_tag) {
 | |
|         typedef const E2 expression2_type;
 | |
| 
 | |
|         typename expression2_type::const_iterator it (e2 ().begin ());
 | |
|         typename expression2_type::const_iterator it_end (e2 ().end ());
 | |
|         while (it != it_end) {
 | |
|             v.plus_assign (column (e1 (), it.index ()) * *it);
 | |
|             ++ it;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag) {
 | |
|         typedef typename E1::orientation_category orientation_category;
 | |
|         return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
 | |
|           optimized fashion.
 | |
| 
 | |
|           \param e1 the matrix expression \c A
 | |
|           \param e2 the vector expression \c x
 | |
|           \param v  the result vector \c v
 | |
|           \param init a boolean parameter
 | |
| 
 | |
|           <tt>axpy_prod(A, x, v, init)</tt> implements the well known
 | |
|           axpy-product.  Setting \a init to \c true is equivalent to call
 | |
|           <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
 | |
|           defaults to \c true, but this may change in the future.
 | |
| 
 | |
|           Up to now there are some specialisation for compressed
 | |
|           matrices that give a large speed up compared to prod.
 | |
|           
 | |
|           \ingroup blas2
 | |
| 
 | |
|           \internal
 | |
|           
 | |
|           template parameters:
 | |
|           \param V type of the result vector \c v
 | |
|           \param E1 type of a matrix expression \c A
 | |
|           \param E2 type of a vector expression \c x
 | |
|   */
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2,
 | |
|                V &v, bool init = true) {
 | |
|         typedef typename V::value_type value_type;
 | |
|         typedef typename E2::const_iterator::iterator_category iterator_category;
 | |
| 
 | |
|         if (init)
 | |
|             v.assign (zero_vector<value_type> (e1 ().size1 ()));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         vector<value_type> cv (v);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
 | |
| #endif
 | |
|         axpy_prod (e1, e2, v, iterator_category ());
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
 | |
| #endif
 | |
|         return v;
 | |
|     }
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const vector_expression<E2> &e2) {
 | |
|         typedef V vector_type;
 | |
| 
 | |
|         vector_type v (e1 ().size1 ());
 | |
|         return axpy_prod (e1, e2, v, true);
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class T2, class IA2, class TA2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2,
 | |
|                V &v, column_major_tag) {
 | |
|         typedef typename V::size_type size_type;
 | |
|         typedef typename V::value_type value_type;
 | |
| 
 | |
|         for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
 | |
|             size_type begin = e2.index1_data () [j];
 | |
|             size_type end = e2.index1_data () [j + 1];
 | |
|             value_type t (v (j));
 | |
|             for (size_type i = begin; i < end; ++ i)
 | |
|                 t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
 | |
|             v (j) = t;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class T2, class IA2, class TA2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
 | |
|                V &v, row_major_tag) {
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
 | |
|             size_type begin = e2.index1_data () [i];
 | |
|             size_type end = e2.index1_data () [i + 1];
 | |
|             for (size_type j = begin; j < end; ++ j)
 | |
|                 v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class V, class E1, class T2, class L2, class IA2, class TA2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
 | |
|                V &v, bool init = true) {
 | |
|         typedef typename V::value_type value_type;
 | |
|         typedef typename L2::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             v.assign (zero_vector<value_type> (e2.size2 ()));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         vector<value_type> cv (v);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
 | |
| #endif
 | |
|         axpy_prod (e1, e2, v, orientation_category ());
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
 | |
| #endif
 | |
|         return v;
 | |
|     }
 | |
|     template<class V, class E1, class T2, class L2, class IA2, class TA2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
 | |
|         typedef V vector_type;
 | |
| 
 | |
|         vector_type v (e2.size2 ());
 | |
|         return axpy_prod (e1, e2, v, true);
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag, column_major_tag) {
 | |
|         typedef const E2 expression2_type;
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
 | |
|         typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
 | |
|         while (it2 != it2_end) {
 | |
|             size_type index2 (it2.index2 ());
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression2_type::const_iterator1 it1 (it2.begin ());
 | |
|             typename expression2_type::const_iterator1 it1_end (it2.end ());
 | |
| #else
 | |
|             typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
 | |
|             typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
 | |
| #endif
 | |
|             while (it1 != it1_end) {
 | |
|                 v (index2) += *it1 * e1 () (it1.index1 ());
 | |
|                 ++ it1;
 | |
|             }
 | |
|             ++ it2;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag, row_major_tag) {
 | |
|         typedef const E2 expression2_type;
 | |
|         typedef typename V::size_type size_type;
 | |
| 
 | |
|         typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
 | |
|         typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
 | |
|         while (it1 != it1_end) {
 | |
|             size_type index1 (it1.index1 ());
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression2_type::const_iterator2 it2 (it1.begin ());
 | |
|             typename expression2_type::const_iterator2 it2_end (it1.end ());
 | |
| #else
 | |
|             typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
 | |
|             typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
 | |
| #endif
 | |
|             while (it2 != it2_end) {
 | |
|                 v (it2.index2 ()) += *it2 * e1 () (index1);
 | |
|                 ++ it2;
 | |
|             }
 | |
|             ++ it1;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                V &v, sparse_bidirectional_iterator_tag) {
 | |
|         typedef const E1 expression1_type;
 | |
| 
 | |
|         typename expression1_type::const_iterator it (e1 ().begin ());
 | |
|         typename expression1_type::const_iterator it_end (e1 ().end ());
 | |
|         while (it != it_end) {
 | |
|             v.plus_assign (*it * row (e2 (), it.index ()));
 | |
|             ++ it;
 | |
|         }
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                V &v, packed_random_access_iterator_tag) {
 | |
|         typedef typename E2::orientation_category orientation_category;
 | |
|         return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
 | |
|     }
 | |
| 
 | |
| 
 | |
|   /** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
 | |
|           optimized fashion.
 | |
| 
 | |
|           \param e1 the vector expression \c x
 | |
|           \param e2 the matrix expression \c A
 | |
|           \param v  the result vector \c v
 | |
|           \param init a boolean parameter
 | |
| 
 | |
|           <tt>axpy_prod(x, A, v, init)</tt> implements the well known
 | |
|           axpy-product.  Setting \a init to \c true is equivalent to call
 | |
|           <tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
 | |
|           defaults to \c true, but this may change in the future.
 | |
| 
 | |
|           Up to now there are some specialisation for compressed
 | |
|           matrices that give a large speed up compared to prod.
 | |
|           
 | |
|           \ingroup blas2
 | |
| 
 | |
|           \internal
 | |
|           
 | |
|           template parameters:
 | |
|           \param V type of the result vector \c v
 | |
|           \param E1 type of a vector expression \c x
 | |
|           \param E2 type of a matrix expression \c A
 | |
|   */
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V &
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                V &v, bool init = true) {
 | |
|         typedef typename V::value_type value_type;
 | |
|         typedef typename E1::const_iterator::iterator_category iterator_category;
 | |
| 
 | |
|         if (init)
 | |
|             v.assign (zero_vector<value_type> (e2 ().size2 ()));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         vector<value_type> cv (v);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
 | |
| #endif
 | |
|         axpy_prod (e1, e2, v, iterator_category ());
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
 | |
| #endif
 | |
|         return v;
 | |
|     }
 | |
|     template<class V, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     V
 | |
|     axpy_prod (const vector_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2) {
 | |
|         typedef V vector_type;
 | |
| 
 | |
|         vector_type v (e2 ().size2 ());
 | |
|         return axpy_prod (e1, e2, v, true);
 | |
|     }
 | |
| 
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, TRI,
 | |
|                dense_proxy_tag, row_major_tag) {
 | |
| 
 | |
|         typedef typename M::size_type size_type;
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         typedef typename M::value_type value_type;
 | |
|         matrix<value_type, row_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
 | |
| #endif
 | |
|         size_type size1 (e1 ().size1 ());
 | |
|         size_type size2 (e1 ().size2 ());
 | |
|         for (size_type i = 0; i < size1; ++ i)
 | |
|             for (size_type j = 0; j < size2; ++ j)
 | |
|                 row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, TRI,
 | |
|                sparse_proxy_tag, row_major_tag) {
 | |
| 
 | |
|         typedef TRI triangular_restriction;
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef const E2 expression2_type;
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         typedef typename M::value_type value_type;
 | |
|         matrix<value_type, row_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
 | |
| #endif
 | |
|         typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
 | |
|         typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
 | |
|         while (it1 != it1_end) {
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression1_type::const_iterator2 it2 (it1.begin ());
 | |
|             typename expression1_type::const_iterator2 it2_end (it1.end ());
 | |
| #else
 | |
|             typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
 | |
|             typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
 | |
| #endif
 | |
|             while (it2 != it2_end) {
 | |
|                 // row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
 | |
|                 matrix_row<expression2_type> mr (e2 (), it2.index2 ());
 | |
|                 typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
 | |
|                 typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
 | |
|                 while (itr != itr_end) {
 | |
|                     if (triangular_restriction::other (it1.index1 (), itr.index ()))
 | |
|                         m (it1.index1 (), itr.index ()) += *it2 * *itr;
 | |
|                     ++ itr;
 | |
|                 }
 | |
|                 ++ it2;
 | |
|             }
 | |
|             ++ it1;
 | |
|         }
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, TRI,
 | |
|                dense_proxy_tag, column_major_tag) {
 | |
|         typedef typename M::size_type size_type;
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         typedef typename M::value_type value_type;
 | |
|         matrix<value_type, column_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
 | |
| #endif
 | |
|         size_type size1 (e2 ().size1 ());
 | |
|         size_type size2 (e2 ().size2 ());
 | |
|         for (size_type j = 0; j < size2; ++ j)
 | |
|             for (size_type i = 0; i < size1; ++ i)
 | |
|                 column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, TRI,
 | |
|                sparse_proxy_tag, column_major_tag) {
 | |
|         typedef TRI triangular_restriction;
 | |
|         typedef const E1 expression1_type;
 | |
|         typedef const E2 expression2_type;
 | |
| 
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         typedef typename M::value_type value_type;
 | |
|         matrix<value_type, column_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
 | |
| #endif
 | |
|         typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
 | |
|         typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
 | |
|         while (it2 != it2_end) {
 | |
| #ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
 | |
|             typename expression2_type::const_iterator1 it1 (it2.begin ());
 | |
|             typename expression2_type::const_iterator1 it1_end (it2.end ());
 | |
| #else
 | |
|             typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
 | |
|             typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
 | |
| #endif
 | |
|             while (it1 != it1_end) {
 | |
|                 // column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
 | |
|                 matrix_column<expression1_type> mc (e1 (), it1.index1 ());
 | |
|                 typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
 | |
|                 typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
 | |
|                 while (itc != itc_end) {
 | |
|                     if(triangular_restriction::other (itc.index (), it2.index2 ()))
 | |
|                        m (itc.index (), it2.index2 ()) += *it1 * *itc;
 | |
|                     ++ itc;
 | |
|                 }
 | |
|                 ++ it1;
 | |
|             }
 | |
|             ++ it2;
 | |
|         }
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, TRI, bool init = true) {
 | |
|         typedef typename M::value_type value_type;
 | |
|         typedef typename M::storage_category storage_category;
 | |
|         typedef typename M::orientation_category orientation_category;
 | |
|         typedef TRI triangular_restriction;
 | |
| 
 | |
|         if (init)
 | |
|             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
 | |
|         return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
 | |
|     }
 | |
|     template<class M, class E1, class E2, class TRI>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                TRI) {
 | |
|         typedef M matrix_type;
 | |
|         typedef TRI triangular_restriction;
 | |
| 
 | |
|         matrix_type m (e1 ().size1 (), e2 ().size2 ());
 | |
|         return axpy_prod (e1, e2, m, triangular_restriction (), true);
 | |
|     }
 | |
| 
 | |
|   /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
 | |
|           optimized fashion.
 | |
| 
 | |
|           \param e1 the matrix expression \c A
 | |
|           \param e2 the matrix expression \c X
 | |
|           \param m  the result matrix \c M
 | |
|           \param init a boolean parameter
 | |
| 
 | |
|           <tt>axpy_prod(A, X, M, init)</tt> implements the well known
 | |
|           axpy-product.  Setting \a init to \c true is equivalent to call
 | |
|           <tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
 | |
|           defaults to \c true, but this may change in the future.
 | |
| 
 | |
|           Up to now there are no specialisations.
 | |
|           
 | |
|           \ingroup blas3
 | |
| 
 | |
|           \internal
 | |
|           
 | |
|           template parameters:
 | |
|           \param M type of the result matrix \c M
 | |
|           \param E1 type of a matrix expression \c A
 | |
|           \param E2 type of a matrix expression \c X
 | |
|   */
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2,
 | |
|                M &m, bool init = true) {
 | |
|         typedef typename M::value_type value_type;
 | |
|         typedef typename M::storage_category storage_category;
 | |
|         typedef typename M::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
 | |
|         return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
 | |
|     }
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M
 | |
|     axpy_prod (const matrix_expression<E1> &e1,
 | |
|                const matrix_expression<E2> &e2) {
 | |
|         typedef M matrix_type;
 | |
| 
 | |
|         matrix_type m (e1 ().size1 (), e2 ().size2 ());
 | |
|         return axpy_prod (e1, e2, m, full (), true);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     opb_prod (const matrix_expression<E1> &e1,
 | |
|               const matrix_expression<E2> &e2,
 | |
|               M &m,
 | |
|               dense_proxy_tag, row_major_tag) {
 | |
|         typedef typename M::size_type size_type;
 | |
|         typedef typename M::value_type value_type;
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         matrix<value_type, row_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
 | |
| #endif
 | |
|         size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
 | |
|         for (size_type k = 0; k < size; ++ k) {
 | |
|             vector<value_type> ce1 (column (e1 (), k));
 | |
|             vector<value_type> re2 (row (e2 (), k));
 | |
|             m.plus_assign (outer_prod (ce1, re2));
 | |
|         }
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     opb_prod (const matrix_expression<E1> &e1,
 | |
|               const matrix_expression<E2> &e2,
 | |
|               M &m,
 | |
|               dense_proxy_tag, column_major_tag) {
 | |
|         typedef typename M::size_type size_type;
 | |
|         typedef typename M::value_type value_type;
 | |
| 
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         matrix<value_type, column_major> cm (m);
 | |
|         typedef typename type_traits<value_type>::real_type real_type;
 | |
|         real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
 | |
|         indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
 | |
| #endif
 | |
|         size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
 | |
|         for (size_type k = 0; k < size; ++ k) {
 | |
|             vector<value_type> ce1 (column (e1 (), k));
 | |
|             vector<value_type> re2 (row (e2 (), k));
 | |
|             m.plus_assign (outer_prod (ce1, re2));
 | |
|         }
 | |
| #if BOOST_UBLAS_TYPE_CHECK
 | |
|         BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
 | |
| #endif
 | |
|         return m;
 | |
|     }
 | |
| 
 | |
|     // Dispatcher
 | |
| 
 | |
|   /** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
 | |
|           optimized fashion.
 | |
| 
 | |
|           \param e1 the matrix expression \c A
 | |
|           \param e2 the matrix expression \c X
 | |
|           \param m  the result matrix \c M
 | |
|           \param init a boolean parameter
 | |
| 
 | |
|           <tt>opb_prod(A, X, M, init)</tt> implements the well known
 | |
|           axpy-product. Setting \a init to \c true is equivalent to call
 | |
|           <tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
 | |
|           defaults to \c true, but this may change in the future.
 | |
| 
 | |
|           This function may give a speedup if \c A has less columns than
 | |
|           rows, because the product is computed as a sum of outer
 | |
|           products.
 | |
|           
 | |
|           \ingroup blas3
 | |
| 
 | |
|           \internal
 | |
|           
 | |
|           template parameters:
 | |
|           \param M type of the result matrix \c M
 | |
|           \param E1 type of a matrix expression \c A
 | |
|           \param E2 type of a matrix expression \c X
 | |
|   */
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M &
 | |
|     opb_prod (const matrix_expression<E1> &e1,
 | |
|               const matrix_expression<E2> &e2,
 | |
|               M &m, bool init = true) {
 | |
|         typedef typename M::value_type value_type;
 | |
|         typedef typename M::storage_category storage_category;
 | |
|         typedef typename M::orientation_category orientation_category;
 | |
| 
 | |
|         if (init)
 | |
|             m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
 | |
|         return opb_prod (e1, e2, m, storage_category (), orientation_category ());
 | |
|     }
 | |
|     template<class M, class E1, class E2>
 | |
|     BOOST_UBLAS_INLINE
 | |
|     M
 | |
|     opb_prod (const matrix_expression<E1> &e1,
 | |
|               const matrix_expression<E2> &e2) {
 | |
|         typedef M matrix_type;
 | |
| 
 | |
|         matrix_type m (e1 ().size1 (), e2 ().size2 ());
 | |
|         return opb_prod (e1, e2, m, true);
 | |
|     }
 | |
| 
 | |
| }}}
 | |
| 
 | |
| #endif
 | 
