489 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			489 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // Copyright 2008 Gautam Sewani
 | |
| // Copyright 2008 John Maddock
 | |
| //
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
 | |
| #define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
 | |
| 
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/math/special_functions/lanczos.hpp>
 | |
| #include <boost/math/special_functions/gamma.hpp>
 | |
| #include <boost/math/special_functions/pow.hpp>
 | |
| #include <boost/math/special_functions/prime.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| 
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
| #include <typeinfo>
 | |
| #endif
 | |
| 
 | |
| namespace boost{ namespace math{ namespace detail{
 | |
| 
 | |
| template <class T, class Func>
 | |
| void bubble_down_one(T* first, T* last, Func f)
 | |
| {
 | |
|    using std::swap;
 | |
|    T* next = first;
 | |
|    ++next;
 | |
|    while((next != last) && (!f(*first, *next)))
 | |
|    {
 | |
|       swap(*first, *next);
 | |
|       ++first;
 | |
|       ++next;
 | |
|    }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| struct sort_functor
 | |
| {
 | |
|    sort_functor(const T* exponents) : m_exponents(exponents){}
 | |
|    bool operator()(int i, int j)
 | |
|    {
 | |
|       return m_exponents[i] > m_exponents[j];
 | |
|    }
 | |
| private:
 | |
|    const T* m_exponents;
 | |
| };
 | |
| 
 | |
| template <class T, class Lanczos, class Policy>
 | |
| T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const Lanczos&, const Policy&)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
| 
 | |
|    BOOST_MATH_INSTRUMENT_FPU
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(x);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(r);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(n);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(N);
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
 | |
| 
 | |
|    T bases[9] = {
 | |
|       T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
 | |
|       T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
 | |
|       T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
 | |
|       T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
 | |
|       1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
 | |
|       1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | |
|       1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | |
|       1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
 | |
|       1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
 | |
|    };
 | |
|    T exponents[9] = {
 | |
|       n + T(0.5f),
 | |
|       r + T(0.5f),
 | |
|       N - n + T(0.5f),
 | |
|       N - r + T(0.5f),
 | |
|       N + T(0.5f),
 | |
|       x + T(0.5f),
 | |
|       n - x + T(0.5f),
 | |
|       r - x + T(0.5f),
 | |
|       N - n - r + x + T(0.5f)
 | |
|    };
 | |
|    int base_e_factors[9] = {
 | |
|       -1, -1, -1, -1, 1, 1, 1, 1, 1
 | |
|    };
 | |
|    int sorted_indexes[9] = {
 | |
|       0, 1, 2, 3, 4, 5, 6, 7, 8
 | |
|    };
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
|    BOOST_MATH_INSTRUMENT_FPU
 | |
|    for(unsigned i = 0; i < 9; ++i)
 | |
|    {
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | |
|    }
 | |
| #endif
 | |
|    std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
|    BOOST_MATH_INSTRUMENT_FPU
 | |
|    for(unsigned i = 0; i < 9; ++i)
 | |
|    {
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    do{
 | |
|       exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
 | |
|       bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
 | |
|       if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
 | |
|       {
 | |
|          return 0;
 | |
|       }
 | |
|       base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
 | |
|       bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
 | |
| 
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
|       for(unsigned i = 0; i < 9; ++i)
 | |
|       {
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | |
|       }
 | |
| #endif
 | |
|    }while(exponents[sorted_indexes[1]] > 1);
 | |
| 
 | |
|    //
 | |
|    // Combine equal powers:
 | |
|    //
 | |
|    int j = 8;
 | |
|    while(exponents[sorted_indexes[j]] == 0) --j;
 | |
|    while(j)
 | |
|    {
 | |
|       while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
 | |
|       {
 | |
|          bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
 | |
|          exponents[sorted_indexes[j]] = 0;
 | |
|          base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
 | |
|          bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
 | |
|          --j;
 | |
|       }
 | |
|       --j;
 | |
| 
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(j);
 | |
|       for(unsigned i = 0; i < 9; ++i)
 | |
|       {
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | |
|          BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | |
|       }
 | |
| #endif
 | |
|    }
 | |
| 
 | |
| #ifdef BOOST_MATH_INSTRUMENT
 | |
|    BOOST_MATH_INSTRUMENT_FPU
 | |
|    for(unsigned i = 0; i < 9; ++i)
 | |
|    {
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(i);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    T result;
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
 | |
|    {
 | |
|       BOOST_FPU_EXCEPTION_GUARD
 | |
|       result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
 | |
|    }
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|    for(unsigned i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
 | |
|    {
 | |
|       BOOST_FPU_EXCEPTION_GUARD
 | |
|       if(result < tools::min_value<T>())
 | |
|          return 0; // short circuit further evaluation
 | |
|       if(exponents[sorted_indexes[i]] == 1)
 | |
|          result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
 | |
|       else if(exponents[sorted_indexes[i]] == 0.5f)
 | |
|          result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
 | |
|       else
 | |
|          result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
 | |
|    
 | |
|       BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|    }
 | |
| 
 | |
|    result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
 | |
|       * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
 | |
|       * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
 | |
|       * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
 | |
|       / 
 | |
|       ( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
 | |
|          * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
 | |
|          * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
 | |
|          * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
 | |
|          * Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
 | |
|    
 | |
|    BOOST_MATH_INSTRUMENT_VARIABLE(result);
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| T hypergeometric_pdf_lanczos_imp(T /*dummy*/, unsigned x, unsigned r, unsigned n, unsigned N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    return exp(
 | |
|       boost::math::lgamma(T(n + 1), pol)
 | |
|       + boost::math::lgamma(T(r + 1), pol)
 | |
|       + boost::math::lgamma(T(N - n + 1), pol)
 | |
|       + boost::math::lgamma(T(N - r + 1), pol)
 | |
|       - boost::math::lgamma(T(N + 1), pol)
 | |
|       - boost::math::lgamma(T(x + 1), pol)
 | |
|       - boost::math::lgamma(T(n - x + 1), pol)
 | |
|       - boost::math::lgamma(T(r - x + 1), pol)
 | |
|       - boost::math::lgamma(T(N - n - r + x + 1), pol));
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline T integer_power(const T& x, int ex)
 | |
| {
 | |
|    if(ex < 0)
 | |
|       return 1 / integer_power(x, -ex);
 | |
|    switch(ex)
 | |
|    {
 | |
|    case 0:
 | |
|       return 1;
 | |
|    case 1:
 | |
|       return x;
 | |
|    case 2:
 | |
|       return x * x;
 | |
|    case 3:
 | |
|       return x * x * x;
 | |
|    case 4:
 | |
|       return boost::math::pow<4>(x);
 | |
|    case 5:
 | |
|       return boost::math::pow<5>(x);
 | |
|    case 6:
 | |
|       return boost::math::pow<6>(x);
 | |
|    case 7:
 | |
|       return boost::math::pow<7>(x);
 | |
|    case 8:
 | |
|       return boost::math::pow<8>(x);
 | |
|    }
 | |
|    BOOST_MATH_STD_USING
 | |
| #ifdef __SUNPRO_CC
 | |
|    return pow(x, T(ex));
 | |
| #else
 | |
|    return pow(x, ex);
 | |
| #endif
 | |
| }
 | |
| template <class T>
 | |
| struct hypergeometric_pdf_prime_loop_result_entry
 | |
| {
 | |
|    T value;
 | |
|    const hypergeometric_pdf_prime_loop_result_entry* next;
 | |
| };
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4510 4512 4610)
 | |
| #endif
 | |
| 
 | |
| struct hypergeometric_pdf_prime_loop_data
 | |
| {
 | |
|    const unsigned x;
 | |
|    const unsigned r;
 | |
|    const unsigned n;
 | |
|    const unsigned N;
 | |
|    unsigned prime_index;
 | |
|    unsigned current_prime;
 | |
| };
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| template <class T>
 | |
| T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
 | |
| {
 | |
|    while(data.current_prime <= data.N)
 | |
|    {
 | |
|       unsigned base = data.current_prime;
 | |
|       int prime_powers = 0;
 | |
|       while(base <= data.N)
 | |
|       {
 | |
|          prime_powers += data.n / base;
 | |
|          prime_powers += data.r / base;
 | |
|          prime_powers += (data.N - data.n) / base;
 | |
|          prime_powers += (data.N - data.r) / base;
 | |
|          prime_powers -= data.N / base;
 | |
|          prime_powers -= data.x / base;
 | |
|          prime_powers -= (data.n - data.x) / base;
 | |
|          prime_powers -= (data.r - data.x) / base;
 | |
|          prime_powers -= (data.N - data.n - data.r + data.x) / base;
 | |
|          base *= data.current_prime;
 | |
|       }
 | |
|       if(prime_powers)
 | |
|       {
 | |
|          T p = integer_power<T>(static_cast<T>(data.current_prime), prime_powers);
 | |
|          if((p > 1) && (tools::max_value<T>() / p < result.value))
 | |
|          {
 | |
|             //
 | |
|             // The next calculation would overflow, use recursion
 | |
|             // to sidestep the issue:
 | |
|             //
 | |
|             hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
 | |
|             data.current_prime = prime(++data.prime_index);
 | |
|             return hypergeometric_pdf_prime_loop_imp<T>(data, t);
 | |
|          }
 | |
|          if((p < 1) && (tools::min_value<T>() / p > result.value))
 | |
|          {
 | |
|             //
 | |
|             // The next calculation would underflow, use recursion
 | |
|             // to sidestep the issue:
 | |
|             //
 | |
|             hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
 | |
|             data.current_prime = prime(++data.prime_index);
 | |
|             return hypergeometric_pdf_prime_loop_imp<T>(data, t);
 | |
|          }
 | |
|          result.value *= p;
 | |
|       }
 | |
|       data.current_prime = prime(++data.prime_index);
 | |
|    }
 | |
|    //
 | |
|    // When we get to here we have run out of prime factors,
 | |
|    // the overall result is the product of all the partial
 | |
|    // results we have accumulated on the stack so far, these
 | |
|    // are in a linked list starting with "data.head" and ending
 | |
|    // with "result".
 | |
|    //
 | |
|    // All that remains is to multiply them together, taking
 | |
|    // care not to overflow or underflow.
 | |
|    //
 | |
|    // Enumerate partial results >= 1 in variable i
 | |
|    // and partial results < 1 in variable j:
 | |
|    //
 | |
|    hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
 | |
|    i = &result;
 | |
|    while(i && i->value < 1)
 | |
|       i = i->next;
 | |
|    j = &result;
 | |
|    while(j && j->value >= 1)
 | |
|       j = j->next;
 | |
| 
 | |
|    T prod = 1;
 | |
| 
 | |
|    while(i || j)
 | |
|    {
 | |
|       while(i && ((prod <= 1) || (j == 0)))
 | |
|       {
 | |
|          prod *= i->value;
 | |
|          i = i->next;
 | |
|          while(i && i->value < 1)
 | |
|             i = i->next;
 | |
|       }
 | |
|       while(j && ((prod >= 1) || (i == 0)))
 | |
|       {
 | |
|          prod *= j->value;
 | |
|          j = j->next;
 | |
|          while(j && j->value >= 1)
 | |
|             j = j->next;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return prod;
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| inline T hypergeometric_pdf_prime_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | |
| {
 | |
|    hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
 | |
|    hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
 | |
|    return hypergeometric_pdf_prime_loop_imp<T>(data, result);
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| T hypergeometric_pdf_factorial_imp(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    BOOST_ASSERT(N <= boost::math::max_factorial<T>::value);
 | |
|    T result = boost::math::unchecked_factorial<T>(n);
 | |
|    T num[3] = {
 | |
|       boost::math::unchecked_factorial<T>(r),
 | |
|       boost::math::unchecked_factorial<T>(N - n),
 | |
|       boost::math::unchecked_factorial<T>(N - r)
 | |
|    };
 | |
|    T denom[5] = {
 | |
|       boost::math::unchecked_factorial<T>(N),
 | |
|       boost::math::unchecked_factorial<T>(x),
 | |
|       boost::math::unchecked_factorial<T>(n - x),
 | |
|       boost::math::unchecked_factorial<T>(r - x),
 | |
|       boost::math::unchecked_factorial<T>(N - n - r + x)
 | |
|    };
 | |
|    int i = 0;
 | |
|    int j = 0;
 | |
|    while((i < 3) || (j < 5))
 | |
|    {
 | |
|       while((j < 5) && ((result >= 1) || (i >= 3)))
 | |
|       {
 | |
|          result /= denom[j];
 | |
|          ++j;
 | |
|       }
 | |
|       while((i < 3) && ((result <= 1) || (j >= 5)))
 | |
|       {
 | |
|          result *= num[i];
 | |
|          ++i;
 | |
|       }
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T, class Policy>
 | |
| inline typename tools::promote_args<T>::type 
 | |
|    hypergeometric_pdf(unsigned x, unsigned r, unsigned n, unsigned N, const Policy&)
 | |
| {
 | |
|    BOOST_FPU_EXCEPTION_GUARD
 | |
|    typedef typename tools::promote_args<T>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
 | |
|    typedef typename policies::normalise<
 | |
|       Policy, 
 | |
|       policies::promote_float<false>, 
 | |
|       policies::promote_double<false>, 
 | |
|       policies::discrete_quantile<>,
 | |
|       policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|    value_type result;
 | |
|    if(N <= boost::math::max_factorial<value_type>::value)
 | |
|    {
 | |
|       //
 | |
|       // If N is small enough then we can evaluate the PDF via the factorials
 | |
|       // directly: table lookup of the factorials gives the best performance
 | |
|       // of the methods available:
 | |
|       //
 | |
|       result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
 | |
|    }
 | |
|    else if(N <= boost::math::prime(boost::math::max_prime - 1))
 | |
|    {
 | |
|       //
 | |
|       // If N is no larger than the largest prime number in our lookup table
 | |
|       // (104729) then we can use prime factorisation to evaluate the PDF,
 | |
|       // this is slow but accurate:
 | |
|       //
 | |
|       result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // Catch all case - use the lanczos approximation - where available - 
 | |
|       // to evaluate the ratio of factorials.  This is reasonably fast
 | |
|       // (almost as quick as using logarithmic evaluation in terms of lgamma)
 | |
|       // but only a few digits better in accuracy than using lgamma:
 | |
|       //
 | |
|       result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
 | |
|    }
 | |
| 
 | |
|    if(result > 1)
 | |
|    {
 | |
|       result = 1;
 | |
|    }
 | |
|    if(result < 0)
 | |
|    {
 | |
|       result = 0;
 | |
|    }
 | |
| 
 | |
|    return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
 | |
| }
 | |
| 
 | |
| }}} // namespaces
 | |
| 
 | |
| #endif
 | |
| 
 | 
