636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			636 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2006.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_SF_DIGAMMA_HPP
 | |
| #define BOOST_MATH_SF_DIGAMMA_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4702) // Unreachable code (release mode only warning)
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/tools/rational.hpp>
 | |
| #include <boost/math/tools/series.hpp>
 | |
| #include <boost/math/tools/promotion.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/mpl/comparison.hpp>
 | |
| #include <boost/math/tools/big_constant.hpp>
 | |
| 
 | |
| namespace boost{
 | |
| namespace math{
 | |
| namespace detail{
 | |
| //
 | |
| // Begin by defining the smallest value for which it is safe to
 | |
| // use the asymptotic expansion for digamma:
 | |
| //
 | |
| inline unsigned digamma_large_lim(const mpl::int_<0>*)
 | |
| {  return 20;  }
 | |
| inline unsigned digamma_large_lim(const mpl::int_<113>*)
 | |
| {  return 20;  }
 | |
| inline unsigned digamma_large_lim(const void*)
 | |
| {  return 10;  }
 | |
| //
 | |
| // Implementations of the asymptotic expansion come next,
 | |
| // the coefficients of the series have been evaluated
 | |
| // in advance at high precision, and the series truncated
 | |
| // at the first term that's too small to effect the result.
 | |
| // Note that the series becomes divergent after a while
 | |
| // so truncation is very important.
 | |
| //
 | |
| // This first one gives 34-digit precision for x >= 20:
 | |
| //
 | |
| template <class T>
 | |
| inline T digamma_imp_large(T x, const mpl::int_<113>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
|    static const T P[] = {
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.003968253968253968253968253968253968253968253968254),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0041666666666666666666666666666666666666666666666667),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.0075757575757575757575757575757575757575757575757576),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.021092796092796092796092796092796092796092796092796),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.44325980392156862745098039215686274509803921568627),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 3.0539543302701197438039543302701197438039543302701),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -26.456212121212121212121212121212121212121212121212),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 281.4601449275362318840579710144927536231884057971),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -3607.510546398046398046398046398046398046398046398),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 54827.583333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -974936.82385057471264367816091954022988505747126437),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 20052695.796688078946143462272494530559046688078946),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -472384867.72162990196078431372549019607843137254902),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 12635724795.916666666666666666666666666666666666667)
 | |
|    };
 | |
|    x -= 1;
 | |
|    T result = log(x);
 | |
|    result += 1 / (2 * x);
 | |
|    T z = 1 / (x*x);
 | |
|    result -= z * tools::evaluate_polynomial(P, z);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 19-digit precision for x >= 10:
 | |
| //
 | |
| template <class T>
 | |
| inline T digamma_imp_large(T x, const mpl::int_<64>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
|    static const T P[] = {
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.003968253968253968253968253968253968253968253968254),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0041666666666666666666666666666666666666666666666667),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.0075757575757575757575757575757575757575757575757576),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.021092796092796092796092796092796092796092796092796),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.44325980392156862745098039215686274509803921568627),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 3.0539543302701197438039543302701197438039543302701),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -26.456212121212121212121212121212121212121212121212),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 281.4601449275362318840579710144927536231884057971),
 | |
|    };
 | |
|    x -= 1;
 | |
|    T result = log(x);
 | |
|    result += 1 / (2 * x);
 | |
|    T z = 1 / (x*x);
 | |
|    result -= z * tools::evaluate_polynomial(P, z);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 17-digit precision for x >= 10:
 | |
| //
 | |
| template <class T>
 | |
| inline T digamma_imp_large(T x, const mpl::int_<53>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
|    static const T P[] = {
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.003968253968253968253968253968253968253968253968254),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0041666666666666666666666666666666666666666666666667),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.0075757575757575757575757575757575757575757575757576),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.021092796092796092796092796092796092796092796092796),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.44325980392156862745098039215686274509803921568627)
 | |
|    };
 | |
|    x -= 1;
 | |
|    T result = log(x);
 | |
|    result += 1 / (2 * x);
 | |
|    T z = 1 / (x*x);
 | |
|    result -= z * tools::evaluate_polynomial(P, z);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 9-digit precision for x >= 10:
 | |
| //
 | |
| template <class T>
 | |
| inline T digamma_imp_large(T x, const mpl::int_<24>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
|    static const T P[] = {
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 24, 0.083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 24, -0.0083333333333333333333333333333333333333333333333333),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 24, 0.003968253968253968253968253968253968253968253968254)
 | |
|    };
 | |
|    x -= 1;
 | |
|    T result = log(x);
 | |
|    result += 1 / (2 * x);
 | |
|    T z = 1 / (x*x);
 | |
|    result -= z * tools::evaluate_polynomial(P, z);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // Fully generic asymptotic expansion in terms of Bernoulli numbers, see:
 | |
| // http://functions.wolfram.com/06.14.06.0012.01
 | |
| //
 | |
| template <class T>
 | |
| struct digamma_series_func
 | |
| {
 | |
| private:
 | |
|    int k;
 | |
|    T xx;
 | |
|    T term;
 | |
| public:
 | |
|    digamma_series_func(T x) : k(1), xx(x * x), term(1 / (x * x)) {}
 | |
|    T operator()()
 | |
|    {
 | |
|       T result = term * boost::math::bernoulli_b2n<T>(k) / (2 * k);
 | |
|       term /= xx;
 | |
|       ++k;
 | |
|       return result;
 | |
|    }
 | |
|    typedef T result_type;
 | |
| };
 | |
| 
 | |
| template <class T, class Policy>
 | |
| inline T digamma_imp_large(T x, const Policy& pol, const mpl::int_<0>*)
 | |
| {
 | |
|    BOOST_MATH_STD_USING
 | |
|    digamma_series_func<T> s(x);
 | |
|    T result = log(x) - 1 / (2 * x);
 | |
|    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|    result = boost::math::tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, -result);
 | |
|    result = -result;
 | |
|    policies::check_series_iterations<T>("boost::math::digamma<%1%>(%1%)", max_iter, pol);
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // Now follow rational approximations over the range [1,2].
 | |
| //
 | |
| // 35-digit precision:
 | |
| //
 | |
| template <class T>
 | |
| T digamma_imp_1_2(T x, const mpl::int_<113>*)
 | |
| {
 | |
|    //
 | |
|    // Now the approximation, we use the form:
 | |
|    //
 | |
|    // digamma(x) = (x - root) * (Y + R(x-1))
 | |
|    //
 | |
|    // Where root is the location of the positive root of digamma,
 | |
|    // Y is a constant, and R is optimised for low absolute error
 | |
|    // compared to Y.
 | |
|    //
 | |
|    // Max error found at 128-bit long double precision:  5.541e-35
 | |
|    // Maximum Deviation Found (approximation error):     1.965e-35
 | |
|    //
 | |
|    static const float Y = 0.99558162689208984375F;
 | |
| 
 | |
|    static const T root1 = T(1569415565) / 1073741824uL;
 | |
|    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
 | |
|    static const T root3 = ((T(111616537) / 1073741824uL) / 1073741824uL) / 1073741824uL;
 | |
|    static const T root4 = (((T(503992070) / 1073741824uL) / 1073741824uL) / 1073741824uL) / 1073741824uL;
 | |
|    static const T root5 = BOOST_MATH_BIG_CONSTANT(T, 113, 0.52112228569249997894452490385577338504019838794544e-36);
 | |
| 
 | |
|    static const T P[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.25479851061131551526977464225335883769),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.18684290534374944114622235683619897417),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.80360876047931768958995775910991929922),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.67227342794829064330498117008564270136),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.26569010991230617151285010695543858005),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.05775672694575986971640757748003553385),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.0071432147823164975485922555833274240665),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.00048740753910766168912364555706064993274),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.16454996865214115723416538844975174761e-4),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.20327832297631728077731148515093164955e-6)
 | |
|    };
 | |
|    static const T Q[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 2.6210924610812025425088411043163287646),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 2.6850757078559596612621337395886392594),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 1.4320913706209965531250495490639289418),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.4410872083455009362557012239501953402),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.081385727399251729505165509278152487225),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089478633066857163432104815183858149496),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.00055861622855066424871506755481997374154),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.1760168552357342401304462967950178554e-4),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.20585454493572473724556649516040874384e-6),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, -0.90745971844439990284514121823069162795e-11),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 113, 0.48857673606545846774761343500033283272e-13),
 | |
|    };
 | |
|    T g = x - root1;
 | |
|    g -= root2;
 | |
|    g -= root3;
 | |
|    g -= root4;
 | |
|    g -= root5;
 | |
|    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
 | |
|    T result = g * Y + g * r;
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 19-digit precision:
 | |
| //
 | |
| template <class T>
 | |
| T digamma_imp_1_2(T x, const mpl::int_<64>*)
 | |
| {
 | |
|    //
 | |
|    // Now the approximation, we use the form:
 | |
|    //
 | |
|    // digamma(x) = (x - root) * (Y + R(x-1))
 | |
|    //
 | |
|    // Where root is the location of the positive root of digamma,
 | |
|    // Y is a constant, and R is optimised for low absolute error
 | |
|    // compared to Y.
 | |
|    //
 | |
|    // Max error found at 80-bit long double precision:   5.016e-20
 | |
|    // Maximum Deviation Found (approximation error):     3.575e-20
 | |
|    //
 | |
|    static const float Y = 0.99558162689208984375F;
 | |
| 
 | |
|    static const T root1 = T(1569415565) / 1073741824uL;
 | |
|    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
 | |
|    static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.9016312093258695918615325266959189453125e-19);
 | |
| 
 | |
|    static const T P[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.254798510611315515235),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.314628554532916496608),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.665836341559876230295),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.314767657147375752913),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.0541156266153505273939),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.00289268368333918761452)
 | |
|    };
 | |
|    static const T Q[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 2.1195759927055347547),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 1.54350554664961128724),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.486986018231042975162),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.0660481487173569812846),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.00298999662592323990972),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, -0.165079794012604905639e-5),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 64, 0.317940243105952177571e-7)
 | |
|    };
 | |
|    T g = x - root1;
 | |
|    g -= root2;
 | |
|    g -= root3;
 | |
|    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
 | |
|    T result = g * Y + g * r;
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 18-digit precision:
 | |
| //
 | |
| template <class T>
 | |
| T digamma_imp_1_2(T x, const mpl::int_<53>*)
 | |
| {
 | |
|    //
 | |
|    // Now the approximation, we use the form:
 | |
|    //
 | |
|    // digamma(x) = (x - root) * (Y + R(x-1))
 | |
|    //
 | |
|    // Where root is the location of the positive root of digamma,
 | |
|    // Y is a constant, and R is optimised for low absolute error
 | |
|    // compared to Y.
 | |
|    //
 | |
|    // Maximum Deviation Found:               1.466e-18
 | |
|    // At double precision, max error found:  2.452e-17
 | |
|    //
 | |
|    static const float Y = 0.99558162689208984F;
 | |
| 
 | |
|    static const T root1 = T(1569415565) / 1073741824uL;
 | |
|    static const T root2 = (T(381566830) / 1073741824uL) / 1073741824uL;
 | |
|    static const T root3 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.9016312093258695918615325266959189453125e-19);
 | |
| 
 | |
|    static const T P[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.25479851061131551),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.32555031186804491),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.65031853770896507),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.28919126444774784),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.045251321448739056),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.0020713321167745952)
 | |
|    };
 | |
|    static const T Q[] = {    
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 2.0767117023730469),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 1.4606242909763515),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.43593529692665969),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.054151797245674225),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, 0.0021284987017821144),
 | |
|       BOOST_MATH_BIG_CONSTANT(T, 53, -0.55789841321675513e-6)
 | |
|    };
 | |
|    T g = x - root1;
 | |
|    g -= root2;
 | |
|    g -= root3;
 | |
|    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
 | |
|    T result = g * Y + g * r;
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // 9-digit precision:
 | |
| //
 | |
| template <class T>
 | |
| inline T digamma_imp_1_2(T x, const mpl::int_<24>*)
 | |
| {
 | |
|    //
 | |
|    // Now the approximation, we use the form:
 | |
|    //
 | |
|    // digamma(x) = (x - root) * (Y + R(x-1))
 | |
|    //
 | |
|    // Where root is the location of the positive root of digamma,
 | |
|    // Y is a constant, and R is optimised for low absolute error
 | |
|    // compared to Y.
 | |
|    //
 | |
|    // Maximum Deviation Found:              3.388e-010
 | |
|    // At float precision, max error found:  2.008725e-008
 | |
|    //
 | |
|    static const float Y = 0.99558162689208984f;
 | |
|    static const T root = 1532632.0f / 1048576;
 | |
|    static const T root_minor = static_cast<T>(0.3700660185912626595423257213284682051735604e-6L);
 | |
|    static const T P[] = {    
 | |
|       0.25479851023250261e0f,
 | |
|       -0.44981331915268368e0f,
 | |
|       -0.43916936919946835e0f,
 | |
|       -0.61041765350579073e-1f
 | |
|    };
 | |
|    static const T Q[] = {    
 | |
|       0.1e1,
 | |
|       0.15890202430554952e1f,
 | |
|       0.65341249856146947e0f,
 | |
|       0.63851690523355715e-1f
 | |
|    };
 | |
|    T g = x - root;
 | |
|    g -= root_minor;
 | |
|    T r = tools::evaluate_polynomial(P, T(x-1)) / tools::evaluate_polynomial(Q, T(x-1));
 | |
|    T result = g * Y + g * r;
 | |
| 
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <class T, class Tag, class Policy>
 | |
| T digamma_imp(T x, const Tag* t, const Policy& pol)
 | |
| {
 | |
|    //
 | |
|    // This handles reflection of negative arguments, and all our
 | |
|    // error handling, then forwards to the T-specific approximation.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
| 
 | |
|    T result = 0;
 | |
|    //
 | |
|    // Check for negative arguments and use reflection:
 | |
|    //
 | |
|    if(x <= -1)
 | |
|    {
 | |
|       // Reflect:
 | |
|       x = 1 - x;
 | |
|       // Argument reduction for tan:
 | |
|       T remainder = x - floor(x);
 | |
|       // Shift to negative if > 0.5:
 | |
|       if(remainder > 0.5)
 | |
|       {
 | |
|          remainder -= 1;
 | |
|       }
 | |
|       //
 | |
|       // check for evaluation at a negative pole:
 | |
|       //
 | |
|       if(remainder == 0)
 | |
|       {
 | |
|          return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
 | |
|       }
 | |
|       result = constants::pi<T>() / tan(constants::pi<T>() * remainder);
 | |
|    }
 | |
|    if(x == 0)
 | |
|       return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, x, pol);
 | |
|    //
 | |
|    // If we're above the lower-limit for the
 | |
|    // asymptotic expansion then use it:
 | |
|    //
 | |
|    if(x >= digamma_large_lim(t))
 | |
|    {
 | |
|       result += digamma_imp_large(x, t);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // If x > 2 reduce to the interval [1,2]:
 | |
|       //
 | |
|       while(x > 2)
 | |
|       {
 | |
|          x -= 1;
 | |
|          result += 1/x;
 | |
|       }
 | |
|       //
 | |
|       // If x < 1 use recurrance to shift to > 1:
 | |
|       //
 | |
|       while(x < 1)
 | |
|       {
 | |
|          result -= 1/x;
 | |
|          x += 1;
 | |
|       }
 | |
|       result += digamma_imp_1_2(x, t);
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <class T, class Policy>
 | |
| T digamma_imp(T x, const mpl::int_<0>* t, const Policy& pol)
 | |
| {
 | |
|    //
 | |
|    // This handles reflection of negative arguments, and all our
 | |
|    // error handling, then forwards to the T-specific approximation.
 | |
|    //
 | |
|    BOOST_MATH_STD_USING // ADL of std functions.
 | |
| 
 | |
|    T result = 0;
 | |
|    //
 | |
|    // Check for negative arguments and use reflection:
 | |
|    //
 | |
|    if(x <= -1)
 | |
|    {
 | |
|       // Reflect:
 | |
|       x = 1 - x;
 | |
|       // Argument reduction for tan:
 | |
|       T remainder = x - floor(x);
 | |
|       // Shift to negative if > 0.5:
 | |
|       if(remainder > 0.5)
 | |
|       {
 | |
|          remainder -= 1;
 | |
|       }
 | |
|       //
 | |
|       // check for evaluation at a negative pole:
 | |
|       //
 | |
|       if(remainder == 0)
 | |
|       {
 | |
|          return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, (1 - x), pol);
 | |
|       }
 | |
|       result = constants::pi<T>() / tan(constants::pi<T>() * remainder);
 | |
|    }
 | |
|    if(x == 0)
 | |
|       return policies::raise_pole_error<T>("boost::math::digamma<%1%>(%1%)", 0, x, pol);
 | |
|    //
 | |
|    // If we're above the lower-limit for the
 | |
|    // asymptotic expansion then use it, the
 | |
|    // limit is a linear interpolation with
 | |
|    // limit = 10 at 50 bit precision and
 | |
|    // limit = 250 at 1000 bit precision.
 | |
|    //
 | |
|    int lim = 10 + ((tools::digits<T>() - 50) * 240L) / 950;
 | |
|    T two_x = ldexp(x, 1);
 | |
|    if(x >= lim)
 | |
|    {
 | |
|       result += digamma_imp_large(x, pol, t);
 | |
|    }
 | |
|    else if(floor(x) == x)
 | |
|    {
 | |
|       //
 | |
|       // Special case for integer arguments, see
 | |
|       // http://functions.wolfram.com/06.14.03.0001.01
 | |
|       //
 | |
|       result = -constants::euler<T, Policy>();
 | |
|       T val = 1;
 | |
|       while(val < x)
 | |
|       {
 | |
|          result += 1 / val;
 | |
|          val += 1;
 | |
|       }
 | |
|    }
 | |
|    else if(floor(two_x) == two_x)
 | |
|    {
 | |
|       //
 | |
|       // Special case for half integer arguments, see:
 | |
|       // http://functions.wolfram.com/06.14.03.0007.01
 | |
|       //
 | |
|       result = -2 * constants::ln_two<T, Policy>() - constants::euler<T, Policy>();
 | |
|       int n = itrunc(x);
 | |
|       if(n)
 | |
|       {
 | |
|          for(int k = 1; k < n; ++k)
 | |
|             result += 1 / T(k);
 | |
|          for(int k = n; k <= 2 * n - 1; ++k)
 | |
|             result += 2 / T(k);
 | |
|       }
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // Rescale so we can use the asymptotic expansion:
 | |
|       //
 | |
|       while(x < lim)
 | |
|       {
 | |
|          result -= 1 / x;
 | |
|          x += 1;
 | |
|       }
 | |
|       result += digamma_imp_large(x, pol, t);
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| //
 | |
| // Initializer: ensure all our constants are initialized prior to the first call of main:
 | |
| //
 | |
| template <class T, class Policy>
 | |
| struct digamma_initializer
 | |
| {
 | |
|    struct init
 | |
|    {
 | |
|       init()
 | |
|       {
 | |
|          typedef typename policies::precision<T, Policy>::type precision_type;
 | |
|          do_init(mpl::bool_<precision_type::value && (precision_type::value <= 113)>());
 | |
|       }
 | |
|       void do_init(const mpl::true_&)
 | |
|       {
 | |
|          boost::math::digamma(T(1.5), Policy());
 | |
|          boost::math::digamma(T(500), Policy());
 | |
|       }
 | |
|       void do_init(const mpl::false_&){}
 | |
|       void force_instantiate()const{}
 | |
|    };
 | |
|    static const init initializer;
 | |
|    static void force_instantiate()
 | |
|    {
 | |
|       initializer.force_instantiate();
 | |
|    }
 | |
| };
 | |
| 
 | |
| template <class T, class Policy>
 | |
| const typename digamma_initializer<T, Policy>::init digamma_initializer<T, Policy>::initializer;
 | |
| 
 | |
| } // namespace detail
 | |
| 
 | |
| template <class T, class Policy>
 | |
| inline typename tools::promote_args<T>::type 
 | |
|    digamma(T x, const Policy&)
 | |
| {
 | |
|    typedef typename tools::promote_args<T>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    typedef typename policies::precision<T, Policy>::type precision_type;
 | |
|    typedef typename mpl::if_<
 | |
|       mpl::or_<
 | |
|          mpl::less_equal<precision_type, mpl::int_<0> >,
 | |
|          mpl::greater<precision_type, mpl::int_<114> >
 | |
|       >,
 | |
|       mpl::int_<0>,
 | |
|       typename mpl::if_<
 | |
|          mpl::less<precision_type, mpl::int_<25> >,
 | |
|          mpl::int_<24>,
 | |
|          typename mpl::if_<
 | |
|             mpl::less<precision_type, mpl::int_<54> >,
 | |
|             mpl::int_<53>,
 | |
|             typename mpl::if_<
 | |
|                mpl::less<precision_type, mpl::int_<65> >,
 | |
|                mpl::int_<64>,
 | |
|                mpl::int_<113>
 | |
|             >::type
 | |
|          >::type
 | |
|       >::type
 | |
|    >::type tag_type;
 | |
| 
 | |
|    typedef typename policies::normalise<
 | |
|       Policy,
 | |
|       policies::promote_float<false>,
 | |
|       policies::promote_double<false>,
 | |
|       policies::discrete_quantile<>,
 | |
|       policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|    // Force initialization of constants:
 | |
|    detail::digamma_initializer<value_type, forwarding_policy>::force_instantiate();
 | |
| 
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(detail::digamma_imp(
 | |
|       static_cast<value_type>(x),
 | |
|       static_cast<const tag_type*>(0), forwarding_policy()), "boost::math::digamma<%1%>(%1%)");
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| inline typename tools::promote_args<T>::type 
 | |
|    digamma(T x)
 | |
| {
 | |
|    return digamma(x, policies::policy<>());
 | |
| }
 | |
| 
 | |
| } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | 
