183 lines
6.5 KiB
Plaintext
183 lines
6.5 KiB
Plaintext
///////////////////////////////////////////////////////////////////////////////
|
|
/// \file fold_tree.hpp
|
|
/// Contains definition of the fold_tree<> and reverse_fold_tree<> transforms.
|
|
//
|
|
// Copyright 2008 Eric Niebler. Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_PROTO_TRANSFORM_FOLD_TREE_HPP_EAN_11_05_2007
|
|
#define BOOST_PROTO_TRANSFORM_FOLD_TREE_HPP_EAN_11_05_2007
|
|
|
|
#include <boost/type_traits/is_same.hpp>
|
|
#include <boost/proto/proto_fwd.hpp>
|
|
#include <boost/proto/traits.hpp>
|
|
#include <boost/proto/matches.hpp>
|
|
#include <boost/proto/transform/fold.hpp>
|
|
#include <boost/proto/transform/impl.hpp>
|
|
|
|
namespace boost { namespace proto
|
|
{
|
|
namespace detail
|
|
{
|
|
template<typename Tag>
|
|
struct has_tag
|
|
{
|
|
template<typename Expr, typename State, typename Data, typename EnableIf = Tag>
|
|
struct impl
|
|
{
|
|
typedef mpl::false_ result_type;
|
|
};
|
|
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl<Expr, State, Data, typename Expr::proto_tag>
|
|
{
|
|
typedef mpl::true_ result_type;
|
|
};
|
|
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl<Expr &, State, Data, typename Expr::proto_tag>
|
|
{
|
|
typedef mpl::true_ result_type;
|
|
};
|
|
};
|
|
|
|
template<typename Tag, typename Fun>
|
|
struct fold_tree_
|
|
: if_<has_tag<Tag>, fold<_, _state, fold_tree_<Tag, Fun> >, Fun>
|
|
{};
|
|
|
|
template<typename Tag, typename Fun>
|
|
struct reverse_fold_tree_
|
|
: if_<has_tag<Tag>, reverse_fold<_, _state, reverse_fold_tree_<Tag, Fun> >, Fun>
|
|
{};
|
|
}
|
|
|
|
/// \brief A PrimitiveTransform that recursively applies the
|
|
/// <tt>fold\<\></tt> transform to sub-trees that all share a common
|
|
/// tag type.
|
|
///
|
|
/// <tt>fold_tree\<\></tt> is useful for flattening trees into lists;
|
|
/// for example, you might use <tt>fold_tree\<\></tt> to flatten an
|
|
/// expression tree like <tt>a | b | c</tt> into a Fusion list like
|
|
/// <tt>cons(c, cons(b, cons(a)))</tt>.
|
|
///
|
|
/// <tt>fold_tree\<\></tt> is easily understood in terms of a
|
|
/// <tt>recurse_if_\<\></tt> helper, defined as follows:
|
|
///
|
|
/// \code
|
|
/// template<typename Tag, typename Fun>
|
|
/// struct recurse_if_
|
|
/// : if_<
|
|
/// // If the current node has type "Tag" ...
|
|
/// is_same<tag_of<_>, Tag>()
|
|
/// // ... recurse, otherwise ...
|
|
/// , fold<_, _state, recurse_if_<Tag, Fun> >
|
|
/// // ... apply the Fun transform.
|
|
/// , Fun
|
|
/// >
|
|
/// {};
|
|
/// \endcode
|
|
///
|
|
/// With <tt>recurse_if_\<\></tt> as defined above,
|
|
/// <tt>fold_tree\<Sequence, State0, Fun\>()(e, s, d)</tt> is
|
|
/// equivalent to
|
|
/// <tt>fold<Sequence, State0, recurse_if_<Expr::proto_tag, Fun> >()(e, s, d).</tt>
|
|
/// It has the effect of folding a tree front-to-back, recursing into
|
|
/// child nodes that share a tag type with the parent node.
|
|
template<typename Sequence, typename State0, typename Fun>
|
|
struct fold_tree
|
|
: transform<fold_tree<Sequence, State0, Fun> >
|
|
{
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl
|
|
: fold<
|
|
Sequence
|
|
, State0
|
|
, detail::fold_tree_<typename Expr::proto_tag, Fun>
|
|
>::template impl<Expr, State, Data>
|
|
{};
|
|
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl<Expr &, State, Data>
|
|
: fold<
|
|
Sequence
|
|
, State0
|
|
, detail::fold_tree_<typename Expr::proto_tag, Fun>
|
|
>::template impl<Expr &, State, Data>
|
|
{};
|
|
};
|
|
|
|
/// \brief A PrimitiveTransform that recursively applies the
|
|
/// <tt>reverse_fold\<\></tt> transform to sub-trees that all share
|
|
/// a common tag type.
|
|
///
|
|
/// <tt>reverse_fold_tree\<\></tt> is useful for flattening trees into
|
|
/// lists; for example, you might use <tt>reverse_fold_tree\<\></tt> to
|
|
/// flatten an expression tree like <tt>a | b | c</tt> into a Fusion list
|
|
/// like <tt>cons(a, cons(b, cons(c)))</tt>.
|
|
///
|
|
/// <tt>reverse_fold_tree\<\></tt> is easily understood in terms of a
|
|
/// <tt>recurse_if_\<\></tt> helper, defined as follows:
|
|
///
|
|
/// \code
|
|
/// template<typename Tag, typename Fun>
|
|
/// struct recurse_if_
|
|
/// : if_<
|
|
/// // If the current node has type "Tag" ...
|
|
/// is_same<tag_of<_>, Tag>()
|
|
/// // ... recurse, otherwise ...
|
|
/// , reverse_fold<_, _state, recurse_if_<Tag, Fun> >
|
|
/// // ... apply the Fun transform.
|
|
/// , Fun
|
|
/// >
|
|
/// {};
|
|
/// \endcode
|
|
///
|
|
/// With <tt>recurse_if_\<\></tt> as defined above,
|
|
/// <tt>reverse_fold_tree\<Sequence, State0, Fun\>()(e, s, d)</tt> is
|
|
/// equivalent to
|
|
/// <tt>reverse_fold<Sequence, State0, recurse_if_<Expr::proto_tag, Fun> >()(e, s, d).</tt>
|
|
/// It has the effect of folding a tree back-to-front, recursing into
|
|
/// child nodes that share a tag type with the parent node.
|
|
template<typename Sequence, typename State0, typename Fun>
|
|
struct reverse_fold_tree
|
|
: transform<reverse_fold_tree<Sequence, State0, Fun> >
|
|
{
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl
|
|
: reverse_fold<
|
|
Sequence
|
|
, State0
|
|
, detail::reverse_fold_tree_<typename Expr::proto_tag, Fun>
|
|
>::template impl<Expr, State, Data>
|
|
{};
|
|
|
|
template<typename Expr, typename State, typename Data>
|
|
struct impl<Expr &, State, Data>
|
|
: reverse_fold<
|
|
Sequence
|
|
, State0
|
|
, detail::reverse_fold_tree_<typename Expr::proto_tag, Fun>
|
|
>::template impl<Expr &, State, Data>
|
|
{};
|
|
};
|
|
|
|
/// INTERNAL ONLY
|
|
///
|
|
template<typename Sequence, typename State0, typename Fun>
|
|
struct is_callable<fold_tree<Sequence, State0, Fun> >
|
|
: mpl::true_
|
|
{};
|
|
|
|
/// INTERNAL ONLY
|
|
///
|
|
template<typename Sequence, typename State0, typename Fun>
|
|
struct is_callable<reverse_fold_tree<Sequence, State0, Fun> >
|
|
: mpl::true_
|
|
{};
|
|
|
|
}}
|
|
|
|
#endif
|