215 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2005.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_COMPLEX_ATANH_INCLUDED
 | |
| #define BOOST_MATH_COMPLEX_ATANH_INCLUDED
 | |
| 
 | |
| #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
 | |
| #  include <boost/math/complex/details.hpp>
 | |
| #endif
 | |
| #ifndef BOOST_MATH_LOG1P_INCLUDED
 | |
| #  include <boost/math/special_functions/log1p.hpp>
 | |
| #endif
 | |
| #include <boost/assert.hpp>
 | |
| 
 | |
| #ifdef BOOST_NO_STDC_NAMESPACE
 | |
| namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
 | |
| #endif
 | |
| 
 | |
| namespace boost{ namespace math{
 | |
| 
 | |
| template<class T> 
 | |
| std::complex<T> atanh(const std::complex<T>& z)
 | |
| {
 | |
|    //
 | |
|    // References:
 | |
|    //
 | |
|    // Eric W. Weisstein. "Inverse Hyperbolic Tangent." 
 | |
|    // From MathWorld--A Wolfram Web Resource. 
 | |
|    // http://mathworld.wolfram.com/InverseHyperbolicTangent.html
 | |
|    //
 | |
|    // Also: The Wolfram Functions Site,
 | |
|    // http://functions.wolfram.com/ElementaryFunctions/ArcTanh/
 | |
|    //
 | |
|    // Also "Abramowitz and Stegun. Handbook of Mathematical Functions."
 | |
|    // at : http://jove.prohosting.com/~skripty/toc.htm
 | |
|    //
 | |
|    // See also: https://svn.boost.org/trac/boost/ticket/7291
 | |
|    //
 | |
|    
 | |
|    static const T pi = boost::math::constants::pi<T>();
 | |
|    static const T half_pi = pi / 2;
 | |
|    static const T one = static_cast<T>(1.0L);
 | |
|    static const T two = static_cast<T>(2.0L);
 | |
|    static const T four = static_cast<T>(4.0L);
 | |
|    static const T zero = static_cast<T>(0);
 | |
|    static const T log_two = boost::math::constants::ln_two<T>();
 | |
| 
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable:4127)
 | |
| #endif
 | |
| 
 | |
|    T x = std::fabs(z.real());
 | |
|    T y = std::fabs(z.imag());
 | |
| 
 | |
|    T real, imag;  // our results
 | |
| 
 | |
|    T safe_upper = detail::safe_max(two);
 | |
|    T safe_lower = detail::safe_min(static_cast<T>(2));
 | |
| 
 | |
|    //
 | |
|    // Begin by handling the special cases specified in C99:
 | |
|    //
 | |
|    if((boost::math::isnan)(x))
 | |
|    {
 | |
|       if((boost::math::isnan)(y))
 | |
|          return std::complex<T>(x, x);
 | |
|       else if((boost::math::isinf)(y))
 | |
|          return std::complex<T>(0, ((boost::math::signbit)(z.imag()) ? -half_pi : half_pi));
 | |
|       else
 | |
|          return std::complex<T>(x, x);
 | |
|    }
 | |
|    else if((boost::math::isnan)(y))
 | |
|    {
 | |
|       if(x == 0)
 | |
|          return std::complex<T>(x, y);
 | |
|       if((boost::math::isinf)(x))
 | |
|          return std::complex<T>(0, y);
 | |
|       else
 | |
|          return std::complex<T>(y, y);
 | |
|    }
 | |
|    else if((x > safe_lower) && (x < safe_upper) && (y > safe_lower) && (y < safe_upper))
 | |
|    {
 | |
| 
 | |
|       T yy = y*y;
 | |
|       T mxm1 = one - x;
 | |
|       ///
 | |
|       // The real part is given by:
 | |
|       // 
 | |
|       // real(atanh(z)) == log1p(4*x / ((x-1)*(x-1) + y^2))
 | |
|       // 
 | |
|       real = boost::math::log1p(four * x / (mxm1*mxm1 + yy));
 | |
|       real /= four;
 | |
|       if((boost::math::signbit)(z.real()))
 | |
|          real = (boost::math::changesign)(real);
 | |
| 
 | |
|       imag = std::atan2((y * two), (mxm1*(one+x) - yy));
 | |
|       imag /= two;
 | |
|       if(z.imag() < 0)
 | |
|          imag = (boost::math::changesign)(imag);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       //
 | |
|       // This section handles exception cases that would normally cause
 | |
|       // underflow or overflow in the main formulas.
 | |
|       //
 | |
|       // Begin by working out the real part, we need to approximate
 | |
|       //    real = boost::math::log1p(4x / ((x-1)^2 + y^2))
 | |
|       // without either overflow or underflow in the squared terms.
 | |
|       //
 | |
|       T mxm1 = one - x;
 | |
|       if(x >= safe_upper)
 | |
|       {
 | |
|          // x-1 = x to machine precision:
 | |
|          if((boost::math::isinf)(x) || (boost::math::isinf)(y))
 | |
|          {
 | |
|             real = 0;
 | |
|          }
 | |
|          else if(y >= safe_upper)
 | |
|          {
 | |
|             // Big x and y: divide through by x*y:
 | |
|             real = boost::math::log1p((four/y) / (x/y + y/x));
 | |
|          }
 | |
|          else if(y > one)
 | |
|          {
 | |
|             // Big x: divide through by x:
 | |
|             real = boost::math::log1p(four / (x + y*y/x));
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             // Big x small y, as above but neglect y^2/x:
 | |
|             real = boost::math::log1p(four/x);
 | |
|          }
 | |
|       }
 | |
|       else if(y >= safe_upper)
 | |
|       {
 | |
|          if(x > one)
 | |
|          {
 | |
|             // Big y, medium x, divide through by y:
 | |
|             real = boost::math::log1p((four*x/y) / (y + mxm1*mxm1/y));
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             // Small or medium x, large y:
 | |
|             real = four*x/y/y;
 | |
|          }
 | |
|       }
 | |
|       else if (x != one)
 | |
|       {
 | |
|          // y is small, calculate divisor carefully:
 | |
|          T div = mxm1*mxm1;
 | |
|          if(y > safe_lower)
 | |
|             div += y*y;
 | |
|          real = boost::math::log1p(four*x/div);
 | |
|       }
 | |
|       else
 | |
|          real = boost::math::changesign(two * (std::log(y) - log_two));
 | |
| 
 | |
|       real /= four;
 | |
|       if((boost::math::signbit)(z.real()))
 | |
|          real = (boost::math::changesign)(real);
 | |
| 
 | |
|       //
 | |
|       // Now handle imaginary part, this is much easier,
 | |
|       // if x or y are large, then the formula:
 | |
|       //    atan2(2y, (1-x)*(1+x) - y^2)
 | |
|       // evaluates to +-(PI - theta) where theta is negligible compared to PI.
 | |
|       //
 | |
|       if((x >= safe_upper) || (y >= safe_upper))
 | |
|       {
 | |
|          imag = pi;
 | |
|       }
 | |
|       else if(x <= safe_lower)
 | |
|       {
 | |
|          //
 | |
|          // If both x and y are small then atan(2y),
 | |
|          // otherwise just x^2 is negligible in the divisor:
 | |
|          //
 | |
|          if(y <= safe_lower)
 | |
|             imag = std::atan2(two*y, one);
 | |
|          else
 | |
|          {
 | |
|             if((y == zero) && (x == zero))
 | |
|                imag = 0;
 | |
|             else
 | |
|                imag = std::atan2(two*y, one - y*y);
 | |
|          }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          //
 | |
|          // y^2 is negligible:
 | |
|          //
 | |
|          if((y == zero) && (x == one))
 | |
|             imag = 0;
 | |
|          else
 | |
|             imag = std::atan2(two*y, mxm1*(one+x));
 | |
|       }
 | |
|       imag /= two;
 | |
|       if((boost::math::signbit)(z.imag()))
 | |
|          imag = (boost::math::changesign)(imag);
 | |
|    }
 | |
|    return std::complex<T>(real, imag);
 | |
| #ifdef BOOST_MSVC
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| }
 | |
| 
 | |
| } } // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_COMPLEX_ATANH_INCLUDED
 | 
