517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // boost\math\distributions\geometric.hpp
 | |
| 
 | |
| // Copyright John Maddock 2010.
 | |
| // Copyright Paul A. Bristow 2010.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // geometric distribution is a discrete probability distribution.
 | |
| // It expresses the probability distribution of the number (k) of
 | |
| // events, occurrences, failures or arrivals before the first success.
 | |
| // supported on the set {0, 1, 2, 3...}
 | |
| 
 | |
| // Note that the set includes zero (unlike some definitions that start at one).
 | |
| 
 | |
| // The random variate k is the number of events, occurrences or arrivals.
 | |
| // k argument may be integral, signed, or unsigned, or floating point.
 | |
| // If necessary, it has already been promoted from an integral type.
 | |
| 
 | |
| // Note that the geometric distribution
 | |
| // (like others including the binomial, geometric & Bernoulli)
 | |
| // is strictly defined as a discrete function:
 | |
| // only integral values of k are envisaged.
 | |
| // However because the method of calculation uses a continuous gamma function,
 | |
| // it is convenient to treat it as if a continous function,
 | |
| // and permit non-integral values of k.
 | |
| // To enforce the strict mathematical model, users should use floor or ceil functions
 | |
| // on k outside this function to ensure that k is integral.
 | |
| 
 | |
| // See http://en.wikipedia.org/wiki/geometric_distribution
 | |
| // http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html
 | |
| // http://mathworld.wolfram.com/GeometricDistribution.html
 | |
| 
 | |
| #ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP
 | |
| #define BOOST_MATH_SPECIAL_GEOMETRIC_HPP
 | |
| 
 | |
| #include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b).
 | |
| #include <boost/math/distributions/complement.hpp> // complement.
 | |
| #include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error.
 | |
| #include <boost/math/special_functions/fpclassify.hpp> // isnan.
 | |
| #include <boost/math/tools/roots.hpp> // for root finding.
 | |
| #include <boost/math/distributions/detail/inv_discrete_quantile.hpp>
 | |
| 
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| #include <boost/type_traits/is_integral.hpp>
 | |
| #include <boost/type_traits/is_same.hpp>
 | |
| #include <boost/mpl/if.hpp>
 | |
| 
 | |
| #include <limits> // using std::numeric_limits;
 | |
| #include <utility>
 | |
| 
 | |
| #if defined (BOOST_MSVC)
 | |
| #  pragma warning(push)
 | |
| // This believed not now necessary, so commented out.
 | |
| //#  pragma warning(disable: 4702) // unreachable code.
 | |
| // in domain_error_imp in error_handling.
 | |
| #endif
 | |
| 
 | |
| namespace boost
 | |
| {
 | |
|   namespace math
 | |
|   {
 | |
|     namespace geometric_detail
 | |
|     {
 | |
|       // Common error checking routines for geometric distribution function:
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) )
 | |
|         {
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         return check_success_fraction(function, p, result, pol);
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist_and_k(const char* function,  const RealType& p, RealType k, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if(check_dist(function, p, result, pol) == false)
 | |
|         {
 | |
|           return false;
 | |
|         }
 | |
|         if( !(boost::math::isfinite)(k) || (k < 0) )
 | |
|         { // Check k failures.
 | |
|           *result = policies::raise_domain_error<RealType>(
 | |
|             function,
 | |
|             "Number of failures argument is %1%, but must be >= 0 !", k, pol);
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // Check_dist_and_k
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol)
 | |
|       {
 | |
|         if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false)
 | |
|         {
 | |
|           return false;
 | |
|         }
 | |
|         return true;
 | |
|       } // check_dist_and_prob
 | |
|     } //  namespace geometric_detail
 | |
| 
 | |
|     template <class RealType = double, class Policy = policies::policy<> >
 | |
|     class geometric_distribution
 | |
|     {
 | |
|     public:
 | |
|       typedef RealType value_type;
 | |
|       typedef Policy policy_type;
 | |
| 
 | |
|       geometric_distribution(RealType p) : m_p(p)
 | |
|       { // Constructor stores success_fraction p.
 | |
|         RealType result;
 | |
|         geometric_detail::check_dist(
 | |
|           "geometric_distribution<%1%>::geometric_distribution",
 | |
|           m_p, // Check success_fraction 0 <= p <= 1.
 | |
|           &result, Policy());
 | |
|       } // geometric_distribution constructor.
 | |
| 
 | |
|       // Private data getter class member functions.
 | |
|       RealType success_fraction() const
 | |
|       { // Probability of success as fraction in range 0 to 1.
 | |
|         return m_p;
 | |
|       }
 | |
|       RealType successes() const
 | |
|       { // Total number of successes r = 1 (for compatibility with negative binomial?).
 | |
|         return 1;
 | |
|       }
 | |
| 
 | |
|       // Parameter estimation.
 | |
|       // (These are copies of negative_binomial distribution with successes = 1).
 | |
|       static RealType find_lower_bound_on_p(
 | |
|         RealType trials,
 | |
|         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
 | |
|       {
 | |
|         static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p";
 | |
|         RealType result = 0;  // of error checks.
 | |
|         RealType successes = 1;
 | |
|         RealType failures = trials - successes;
 | |
|         if(false == detail::check_probability(function, alpha, &result, Policy())
 | |
|           && geometric_detail::check_dist_and_k(
 | |
|           function, RealType(0), failures, &result, Policy()))
 | |
|         {
 | |
|           return result;
 | |
|         }
 | |
|         // Use complement ibeta_inv function for lower bound.
 | |
|         // This is adapted from the corresponding binomial formula
 | |
|         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
 | |
|         // This is a Clopper-Pearson interval, and may be overly conservative,
 | |
|         // see also "A Simple Improved Inferential Method for Some
 | |
|         // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY
 | |
|         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
 | |
|         //
 | |
|         return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy());
 | |
|       } // find_lower_bound_on_p
 | |
| 
 | |
|       static RealType find_upper_bound_on_p(
 | |
|         RealType trials,
 | |
|         RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test.
 | |
|       {
 | |
|         static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p";
 | |
|         RealType result = 0;  // of error checks.
 | |
|         RealType successes = 1;
 | |
|         RealType failures = trials - successes;
 | |
|         if(false == geometric_detail::check_dist_and_k(
 | |
|           function, RealType(0), failures, &result, Policy())
 | |
|           && detail::check_probability(function, alpha, &result, Policy()))
 | |
|         {
 | |
|           return result;
 | |
|         }
 | |
|         if(failures == 0)
 | |
|         {
 | |
|            return 1;
 | |
|         }// Use complement ibetac_inv function for upper bound.
 | |
|         // Note adjusted failures value: *not* failures+1 as usual.
 | |
|         // This is adapted from the corresponding binomial formula
 | |
|         // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
 | |
|         // This is a Clopper-Pearson interval, and may be overly conservative,
 | |
|         // see also "A Simple Improved Inferential Method for Some
 | |
|         // Discrete Distributions" Yong CAI and K. Krishnamoorthy
 | |
|         // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf
 | |
|         //
 | |
|         return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy());
 | |
|       } // find_upper_bound_on_p
 | |
| 
 | |
|       // Estimate number of trials :
 | |
|       // "How many trials do I need to be P% sure of seeing k or fewer failures?"
 | |
| 
 | |
|       static RealType find_minimum_number_of_trials(
 | |
|         RealType k,     // number of failures (k >= 0).
 | |
|         RealType p,     // success fraction 0 <= p <= 1.
 | |
|         RealType alpha) // risk level threshold 0 <= alpha <= 1.
 | |
|       {
 | |
|         static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials";
 | |
|         // Error checks:
 | |
|         RealType result = 0;
 | |
|         if(false == geometric_detail::check_dist_and_k(
 | |
|           function, p, k, &result, Policy())
 | |
|           && detail::check_probability(function, alpha, &result, Policy()))
 | |
|         {
 | |
|           return result;
 | |
|         }
 | |
|         result = ibeta_inva(k + 1, p, alpha, Policy());  // returns n - k
 | |
|         return result + k;
 | |
|       } // RealType find_number_of_failures
 | |
| 
 | |
|       static RealType find_maximum_number_of_trials(
 | |
|         RealType k,     // number of failures (k >= 0).
 | |
|         RealType p,     // success fraction 0 <= p <= 1.
 | |
|         RealType alpha) // risk level threshold 0 <= alpha <= 1.
 | |
|       {
 | |
|         static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials";
 | |
|         // Error checks:
 | |
|         RealType result = 0;
 | |
|         if(false == geometric_detail::check_dist_and_k(
 | |
|           function, p, k, &result, Policy())
 | |
|           &&  detail::check_probability(function, alpha, &result, Policy()))
 | |
|         { 
 | |
|           return result;
 | |
|         }
 | |
|         result = ibetac_inva(k + 1, p, alpha, Policy());  // returns n - k
 | |
|         return result + k;
 | |
|       } // RealType find_number_of_trials complemented
 | |
| 
 | |
|     private:
 | |
|       //RealType m_r; // successes fixed at unity.
 | |
|       RealType m_p; // success_fraction
 | |
|     }; // template <class RealType, class Policy> class geometric_distribution
 | |
| 
 | |
|     typedef geometric_distribution<double> geometric; // Reserved name of type double.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */)
 | |
|     { // Range of permissible values for random variable k.
 | |
|        using boost::math::tools::max_value;
 | |
|        return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer?
 | |
|     }
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */)
 | |
|     { // Range of supported values for random variable k.
 | |
|        // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
|        using boost::math::tools::max_value;
 | |
|        return std::pair<RealType, RealType>(static_cast<RealType>(0),  max_value<RealType>()); // max_integer?
 | |
|     }
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType mean(const geometric_distribution<RealType, Policy>& dist)
 | |
|     { // Mean of geometric distribution = (1-p)/p.
 | |
|       return (1 - dist.success_fraction() ) / dist.success_fraction();
 | |
|     } // mean
 | |
| 
 | |
|     // median implemented via quantile(half) in derived accessors.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType mode(const geometric_distribution<RealType, Policy>&)
 | |
|     { // Mode of geometric distribution = zero.
 | |
|       BOOST_MATH_STD_USING // ADL of std functions.
 | |
|       return 0;
 | |
|     } // mode
 | |
|     
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType variance(const geometric_distribution<RealType, Policy>& dist)
 | |
|     { // Variance of Binomial distribution = (1-p) / p^2.
 | |
|       return  (1 - dist.success_fraction())
 | |
|         / (dist.success_fraction() * dist.success_fraction());
 | |
|     } // variance
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType skewness(const geometric_distribution<RealType, Policy>& dist)
 | |
|     { // skewness of geometric distribution = 2-p / (sqrt(r(1-p))
 | |
|       BOOST_MATH_STD_USING // ADL of std functions.
 | |
|       RealType p = dist.success_fraction();
 | |
|       return (2 - p) / sqrt(1 - p);
 | |
|     } // skewness
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist)
 | |
|     { // kurtosis of geometric distribution
 | |
|       // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3
 | |
|       RealType p = dist.success_fraction();
 | |
|       return 3 + (p*p - 6*p + 6) / (1 - p);
 | |
|     } // kurtosis
 | |
| 
 | |
|      template <class RealType, class Policy>
 | |
|     inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist)
 | |
|     { // kurtosis excess of geometric distribution
 | |
|       // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess
 | |
|       RealType p = dist.success_fraction();
 | |
|       return (p*p - 6*p + 6) / (1 - p);
 | |
|     } // kurtosis_excess
 | |
| 
 | |
|     // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist)
 | |
|     // standard_deviation provided by derived accessors.
 | |
|     // RealType hazard(const geometric_distribution<RealType, Policy>& dist)
 | |
|     // hazard of geometric distribution provided by derived accessors.
 | |
|     // RealType chf(const geometric_distribution<RealType, Policy>& dist)
 | |
|     // chf of geometric distribution provided by derived accessors.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
 | |
|     { // Probability Density/Mass Function.
 | |
|       BOOST_FPU_EXCEPTION_GUARD
 | |
|       BOOST_MATH_STD_USING  // For ADL of math functions.
 | |
|       static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)";
 | |
| 
 | |
|       RealType p = dist.success_fraction();
 | |
|       RealType result = 0;
 | |
|       if(false == geometric_detail::check_dist_and_k(
 | |
|         function,
 | |
|         p,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       if (k == 0)
 | |
|       {
 | |
|         return p; // success_fraction
 | |
|       }
 | |
|       RealType q = 1 - p;  // Inaccurate for small p?
 | |
|       // So try to avoid inaccuracy for large or small p.
 | |
|       // but has little effect > last significant bit.
 | |
|       //cout << "p *  pow(q, k) " << result << endl; // seems best whatever p
 | |
|       //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl;
 | |
|       //if (p < 0.5)
 | |
|       //{
 | |
|       //  result = p *  pow(q, k);
 | |
|       //}
 | |
|       //else
 | |
|       //{
 | |
|       //  result = p * exp(k * log1p(-p));
 | |
|       //}
 | |
|       result = p * pow(q, k);
 | |
|       return result;
 | |
|     } // geometric_pdf
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k)
 | |
|     { // Cumulative Distribution Function of geometric.
 | |
|       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
 | |
| 
 | |
|       // k argument may be integral, signed, or unsigned, or floating point.
 | |
|       // If necessary, it has already been promoted from an integral type.
 | |
|       RealType p = dist.success_fraction();
 | |
|       // Error check:
 | |
|       RealType result = 0;
 | |
|       if(false == geometric_detail::check_dist_and_k(
 | |
|         function,
 | |
|         p,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       if(k == 0)
 | |
|       {
 | |
|         return p; // success_fraction
 | |
|       }
 | |
|       //RealType q = 1 - p;  // Bad for small p
 | |
|       //RealType probability = 1 - std::pow(q, k+1);
 | |
| 
 | |
|       RealType z = boost::math::log1p(-p, Policy()) * (k + 1);
 | |
|       RealType probability = -boost::math::expm1(z, Policy());
 | |
| 
 | |
|       return probability;
 | |
|     } // cdf Cumulative Distribution Function geometric.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
 | |
|       { // Complemented Cumulative Distribution Function geometric.
 | |
|       BOOST_MATH_STD_USING
 | |
|       static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)";
 | |
|       // k argument may be integral, signed, or unsigned, or floating point.
 | |
|       // If necessary, it has already been promoted from an integral type.
 | |
|       RealType const& k = c.param;
 | |
|       geometric_distribution<RealType, Policy> const& dist = c.dist;
 | |
|       RealType p = dist.success_fraction();
 | |
|       // Error check:
 | |
|       RealType result = 0;
 | |
|       if(false == geometric_detail::check_dist_and_k(
 | |
|         function,
 | |
|         p,
 | |
|         k,
 | |
|         &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
|       RealType z = boost::math::log1p(-p, Policy()) * (k+1);
 | |
|       RealType probability = exp(z);
 | |
|       return probability;
 | |
|     } // cdf Complemented Cumulative Distribution Function geometric.
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x)
 | |
|     { // Quantile, percentile/100 or Percent Point geometric function.
 | |
|       // Return the number of expected failures k for a given probability p.
 | |
| 
 | |
|       // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability.
 | |
|       // k argument may be integral, signed, or unsigned, or floating point.
 | |
| 
 | |
|       static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
 | |
|       BOOST_MATH_STD_USING // ADL of std functions.
 | |
| 
 | |
|       RealType success_fraction = dist.success_fraction();
 | |
|       // Check dist and x.
 | |
|       RealType result = 0;
 | |
|       if(false == geometric_detail::check_dist_and_prob
 | |
|         (function, success_fraction, x, &result, Policy()))
 | |
|       {
 | |
|         return result;
 | |
|       }
 | |
| 
 | |
|       // Special cases.
 | |
|       if (x == 1)
 | |
|       {  // Would need +infinity failures for total confidence.
 | |
|         result = policies::raise_overflow_error<RealType>(
 | |
|             function,
 | |
|             "Probability argument is 1, which implies infinite failures !", Policy());
 | |
|         return result;
 | |
|        // usually means return +std::numeric_limits<RealType>::infinity();
 | |
|        // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
 | |
|       }
 | |
|       if (x == 0)
 | |
|       { // No failures are expected if P = 0.
 | |
|         return 0; // Total trials will be just dist.successes.
 | |
|       }
 | |
|       // if (P <= pow(dist.success_fraction(), 1))
 | |
|       if (x <= success_fraction)
 | |
|       { // p <= pdf(dist, 0) == cdf(dist, 0)
 | |
|         return 0;
 | |
|       }
 | |
|       if (x == 1)
 | |
|       {
 | |
|         return 0;
 | |
|       }
 | |
|    
 | |
|       // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
 | |
|       result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1;
 | |
|       // Subtract a few epsilons here too?
 | |
|       // to make sure it doesn't slip over, so ceil would be one too many.
 | |
|       return result;
 | |
|     } // RealType quantile(const geometric_distribution dist, p)
 | |
| 
 | |
|     template <class RealType, class Policy>
 | |
|     inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c)
 | |
|     {  // Quantile or Percent Point Binomial function.
 | |
|        // Return the number of expected failures k for a given
 | |
|        // complement of the probability Q = 1 - P.
 | |
|        static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)";
 | |
|        BOOST_MATH_STD_USING
 | |
|        // Error checks:
 | |
|        RealType x = c.param;
 | |
|        const geometric_distribution<RealType, Policy>& dist = c.dist;
 | |
|        RealType success_fraction = dist.success_fraction();
 | |
|        RealType result = 0;
 | |
|        if(false == geometric_detail::check_dist_and_prob(
 | |
|           function,
 | |
|           success_fraction,
 | |
|           x,
 | |
|           &result, Policy()))
 | |
|        {
 | |
|           return result;
 | |
|        }
 | |
| 
 | |
|        // Special cases:
 | |
|        if(x == 1)
 | |
|        {  // There may actually be no answer to this question,
 | |
|           // since the probability of zero failures may be non-zero,
 | |
|           return 0; // but zero is the best we can do:
 | |
|        }
 | |
|        if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy()))
 | |
|        {  // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
 | |
|           return 0; //
 | |
|        }
 | |
|        if(x == 0)
 | |
|        {  // Probability 1 - Q  == 1 so infinite failures to achieve certainty.
 | |
|           // Would need +infinity failures for total confidence.
 | |
|           result = policies::raise_overflow_error<RealType>(
 | |
|              function,
 | |
|              "Probability argument complement is 0, which implies infinite failures !", Policy());
 | |
|           return result;
 | |
|           // usually means return +std::numeric_limits<RealType>::infinity();
 | |
|           // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR
 | |
|        }
 | |
|        // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small
 | |
|        result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1;
 | |
|       return result;
 | |
| 
 | |
|     } // quantile complement
 | |
| 
 | |
|  } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| 
 | |
| #if defined (BOOST_MSVC)
 | |
| # pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP
 | 
