1203 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1203 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // boost\math\distributions\non_central_t.hpp
 | |
| 
 | |
| // Copyright John Maddock 2008.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
 | |
| #define BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
 | |
| 
 | |
| #include <boost/math/distributions/fwd.hpp>
 | |
| #include <boost/math/distributions/non_central_beta.hpp> // for nc beta
 | |
| #include <boost/math/distributions/normal.hpp> // for normal CDF and quantile
 | |
| #include <boost/math/distributions/students_t.hpp>
 | |
| #include <boost/math/distributions/detail/generic_quantile.hpp> // quantile
 | |
| 
 | |
| namespace boost
 | |
| {
 | |
|    namespace math
 | |
|    {
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       class non_central_t_distribution;
 | |
| 
 | |
|       namespace detail{
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t2_p(T v, T delta, T x, T y, const Policy& pol, T init_val)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             //
 | |
|             // Variables come first:
 | |
|             //
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = policies::get_epsilon<T, Policy>();
 | |
|             T d2 = delta * delta / 2;
 | |
|             //
 | |
|             // k is the starting point for iteration, and is the
 | |
|             // maximum of the poisson weighting term, we don't
 | |
|             // ever allow k == 0 as this can lead to catastrophic
 | |
|             // cancellation errors later (test case is v = 1621286869049072.3
 | |
|             // delta = 0.16212868690490723, x = 0.86987415482475994).
 | |
|             //
 | |
|             int k = itrunc(d2);
 | |
|             T pois;
 | |
|             if(k == 0) k = 1;
 | |
|             // Starting Poisson weight:
 | |
|             pois = gamma_p_derivative(T(k+1), d2, pol) 
 | |
|                * tgamma_delta_ratio(T(k + 1), T(0.5f))
 | |
|                * delta / constants::root_two<T>();
 | |
|             if(pois == 0)
 | |
|                return init_val;
 | |
|             T xterm, beta;
 | |
|             // Recurrance & starting beta terms:
 | |
|             beta = x < y
 | |
|                ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, false, true, &xterm)
 | |
|                : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, true, true, &xterm);
 | |
|             xterm *= y / (v / 2 + k);
 | |
|             T poisf(pois), betaf(beta), xtermf(xterm);
 | |
|             T sum = init_val;
 | |
|             if((xterm == 0) && (beta == 0))
 | |
|                return init_val;
 | |
| 
 | |
|             //
 | |
|             // Backwards recursion first, this is the stable
 | |
|             // direction for recursion:
 | |
|             //
 | |
|             boost::uintmax_t count = 0;
 | |
|             T last_term = 0;
 | |
|             for(int i = k; i >= 0; --i)
 | |
|             {
 | |
|                T term = beta * pois;
 | |
|                sum += term;
 | |
|                // Don't terminate on first term in case we "fixed" k above:
 | |
|                if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
 | |
|                   break;
 | |
|                last_term = term;
 | |
|                pois *= (i + 0.5f) / d2;
 | |
|                beta += xterm;
 | |
|                xterm *= (i) / (x * (v / 2 + i - 1));
 | |
|                ++count;
 | |
|             }
 | |
|             last_term = 0;
 | |
|             for(int i = k + 1; ; ++i)
 | |
|             {
 | |
|                poisf *= d2 / (i + 0.5f);
 | |
|                xtermf *= (x * (v / 2 + i - 1)) / (i);
 | |
|                betaf -= xtermf;
 | |
|                T term = poisf * betaf;
 | |
|                sum += term;
 | |
|                if((fabs(last_term) >= fabs(term)) && (fabs(term/sum) < errtol))
 | |
|                   break;
 | |
|                last_term = term;
 | |
|                ++count;
 | |
|                if(count > max_iter)
 | |
|                {
 | |
|                   return policies::raise_evaluation_error(
 | |
|                      "cdf(non_central_t_distribution<%1%>, %1%)", 
 | |
|                      "Series did not converge, closest value was %1%", sum, pol);
 | |
|                }
 | |
|             }
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t2_q(T v, T delta, T x, T y, const Policy& pol, T init_val)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             //
 | |
|             // Variables come first:
 | |
|             //
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
|             T d2 = delta * delta / 2;
 | |
|             //
 | |
|             // k is the starting point for iteration, and is the
 | |
|             // maximum of the poisson weighting term, we don't allow
 | |
|             // k == 0 as this can cause catastrophic cancellation errors
 | |
|             // (test case is v = 561908036470413.25, delta = 0.056190803647041321,
 | |
|             // x = 1.6155232703966216):
 | |
|             //
 | |
|             int k = itrunc(d2);
 | |
|             if(k == 0) k = 1;
 | |
|             // Starting Poisson weight:
 | |
|             T pois;
 | |
|             if((k < (int)(max_factorial<T>::value)) && (d2 < tools::log_max_value<T>()) && (log(d2) * k < tools::log_max_value<T>()))
 | |
|             {
 | |
|                //
 | |
|                // For small k we can optimise this calculation by using
 | |
|                // a simpler reduced formula:
 | |
|                //
 | |
|                pois = exp(-d2);
 | |
|                pois *= pow(d2, static_cast<T>(k));
 | |
|                pois /= boost::math::tgamma(T(k + 1 + 0.5), pol);
 | |
|                pois *= delta / constants::root_two<T>();
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                pois = gamma_p_derivative(T(k+1), d2, pol) 
 | |
|                   * tgamma_delta_ratio(T(k + 1), T(0.5f))
 | |
|                   * delta / constants::root_two<T>();
 | |
|             }
 | |
|             if(pois == 0)
 | |
|                return init_val;
 | |
|             // Recurance term:
 | |
|             T xterm;
 | |
|             T beta;
 | |
|             // Starting beta term:
 | |
|             if(k != 0)
 | |
|             {
 | |
|                beta = x < y 
 | |
|                   ? detail::ibeta_imp(T(k + 1), T(v / 2), x, pol, true, true, &xterm) 
 | |
|                   : detail::ibeta_imp(T(v / 2), T(k + 1), y, pol, false, true, &xterm);
 | |
| 
 | |
|                xterm *= y / (v / 2 + k);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                beta = pow(y, v / 2);
 | |
|                xterm = beta;
 | |
|             }
 | |
|             T poisf(pois), betaf(beta), xtermf(xterm);
 | |
|             T sum = init_val;
 | |
|             if((xterm == 0) && (beta == 0))
 | |
|                return init_val;
 | |
| 
 | |
|             //
 | |
|             // Fused forward and backwards recursion:
 | |
|             //
 | |
|             boost::uintmax_t count = 0;
 | |
|             T last_term = 0;
 | |
|             for(int i = k + 1, j = k; ; ++i, --j)
 | |
|             {
 | |
|                poisf *= d2 / (i + 0.5f);
 | |
|                xtermf *= (x * (v / 2 + i - 1)) / (i);
 | |
|                betaf += xtermf;
 | |
|                T term = poisf * betaf;
 | |
| 
 | |
|                if(j >= 0)
 | |
|                {
 | |
|                   term += beta * pois;
 | |
|                   pois *= (j + 0.5f) / d2;
 | |
|                   beta -= xterm;
 | |
|                   xterm *= (j) / (x * (v / 2 + j - 1));
 | |
|                }
 | |
| 
 | |
|                sum += term;
 | |
|                // Don't terminate on first term in case we "fixed" the value of k above:
 | |
|                if((fabs(last_term) > fabs(term)) && fabs(term/sum) < errtol)
 | |
|                   break;
 | |
|                last_term = term;
 | |
|                if(count > max_iter)
 | |
|                {
 | |
|                   return policies::raise_evaluation_error(
 | |
|                      "cdf(non_central_t_distribution<%1%>, %1%)", 
 | |
|                      "Series did not converge, closest value was %1%", sum, pol);
 | |
|                }
 | |
|                ++count;
 | |
|             }
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t_cdf(T v, T delta, T t, bool invert, const Policy& pol)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             if ((boost::math::isinf)(v))
 | |
|             { // Infinite degrees of freedom, so use normal distribution located at delta.
 | |
|                normal_distribution<T, Policy> n(delta, 1); 
 | |
|                return cdf(n, t);
 | |
|             }
 | |
|             //
 | |
|             // Otherwise, for t < 0 we have to use the reflection formula:
 | |
|             if(t < 0)
 | |
|             {
 | |
|                t = -t;
 | |
|                delta = -delta;
 | |
|                invert = !invert;
 | |
|             }
 | |
|             if(fabs(delta / (4 * v)) < policies::get_epsilon<T, Policy>())
 | |
|             {
 | |
|                // Approximate with a Student's T centred on delta,
 | |
|                // the crossover point is based on eq 2.6 from
 | |
|                // "A Comparison of Approximations To Percentiles of the
 | |
|                // Noncentral t-Distribution".  H. Sahai and M. M. Ojeda,
 | |
|                // Revista Investigacion Operacional Vol 21, No 2, 2000.
 | |
|                // Original sources referenced in the above are:
 | |
|                // "Some Approximations to the Percentage Points of the Noncentral
 | |
|                // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
 | |
|                // "Continuous Univariate Distributions".  N.L. Johnson, S. Kotz and
 | |
|                // N. Balkrishnan. 1995. John Wiley and Sons New York.
 | |
|                T result = cdf(students_t_distribution<T, Policy>(v), t - delta);
 | |
|                return invert ? 1 - result : result;
 | |
|             }
 | |
|             //
 | |
|             // x and y are the corresponding random
 | |
|             // variables for the noncentral beta distribution,
 | |
|             // with y = 1 - x:
 | |
|             //
 | |
|             T x = t * t / (v + t * t);
 | |
|             T y = v / (v + t * t);
 | |
|             T d2 = delta * delta;
 | |
|             T a = 0.5f;
 | |
|             T b = v / 2;
 | |
|             T c = a + b + d2 / 2;
 | |
|             //
 | |
|             // Crossover point for calculating p or q is the same
 | |
|             // as for the noncentral beta:
 | |
|             //
 | |
|             T cross = 1 - (b / c) * (1 + d2 / (2 * c * c));
 | |
|             T result;
 | |
|             if(x < cross)
 | |
|             {
 | |
|                //
 | |
|                // Calculate p:
 | |
|                //
 | |
|                if(x != 0)
 | |
|                {
 | |
|                   result = non_central_beta_p(a, b, d2, x, y, pol);
 | |
|                   result = non_central_t2_p(v, delta, x, y, pol, result);
 | |
|                   result /= 2;
 | |
|                }
 | |
|                else
 | |
|                   result = 0;
 | |
|                result += cdf(boost::math::normal_distribution<T, Policy>(), -delta);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                //
 | |
|                // Calculate q:
 | |
|                //
 | |
|                invert = !invert;
 | |
|                if(x != 0)
 | |
|                {
 | |
|                   result = non_central_beta_q(a, b, d2, x, y, pol);
 | |
|                   result = non_central_t2_q(v, delta, x, y, pol, result);
 | |
|                   result /= 2;
 | |
|                }
 | |
|                else // x == 0
 | |
|                   result = cdf(complement(boost::math::normal_distribution<T, Policy>(), -delta));
 | |
|             }
 | |
|             if(invert)
 | |
|                result = 1 - result;
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t_quantile(const char* function, T v, T delta, T p, T q, const Policy&)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|      //       static const char* function = "quantile(non_central_t_distribution<%1%>, %1%)";
 | |
|      // now passed as function
 | |
|             typedef typename policies::evaluation<T, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy, 
 | |
|                policies::promote_float<false>, 
 | |
|                policies::promote_double<false>, 
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|                T r;
 | |
|                if(!detail::check_df_gt0_to_inf(
 | |
|                   function,
 | |
|                   v, &r, Policy())
 | |
|                   ||
 | |
|                !detail::check_finite(
 | |
|                   function,
 | |
|                   delta,
 | |
|                   &r,
 | |
|                   Policy())
 | |
|                   ||
 | |
|                !detail::check_probability(
 | |
|                   function,
 | |
|                   p,
 | |
|                   &r,
 | |
|                   Policy()))
 | |
|                      return r;
 | |
| 
 | |
| 
 | |
|             value_type guess = 0;
 | |
|             if ( ((boost::math::isinf)(v)) || (v > 1 / boost::math::tools::epsilon<T>()) )
 | |
|             { // Infinite or very large degrees of freedom, so use normal distribution located at delta.
 | |
|                normal_distribution<T, Policy> n(delta, 1);
 | |
|                if (p < q)
 | |
|                {
 | |
|                  return quantile(n, p);
 | |
|                }
 | |
|                else
 | |
|                {
 | |
|                  return quantile(complement(n, q));
 | |
|                }
 | |
|             }
 | |
|             else if(v > 3)
 | |
|             { // Use normal distribution to calculate guess.
 | |
|                value_type mean = (v > 1 / policies::get_epsilon<T, Policy>()) ? delta : delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f));
 | |
|                value_type var = (v > 1 / policies::get_epsilon<T, Policy>()) ? value_type(1) : (((delta * delta + 1) * v) / (v - 2) - mean * mean);
 | |
|                if(p < q)
 | |
|                   guess = quantile(normal_distribution<value_type, forwarding_policy>(mean, var), p);
 | |
|                else
 | |
|                   guess = quantile(complement(normal_distribution<value_type, forwarding_policy>(mean, var), q));
 | |
|             }
 | |
|             //
 | |
|             // We *must* get the sign of the initial guess correct, 
 | |
|             // or our root-finder will fail, so double check it now:
 | |
|             //
 | |
|             value_type pzero = non_central_t_cdf(
 | |
|                static_cast<value_type>(v), 
 | |
|                static_cast<value_type>(delta), 
 | |
|                static_cast<value_type>(0), 
 | |
|                !(p < q), 
 | |
|                forwarding_policy());
 | |
|             int s;
 | |
|             if(p < q)
 | |
|                s = boost::math::sign(p - pzero);
 | |
|             else
 | |
|                s = boost::math::sign(pzero - q);
 | |
|             if(s != boost::math::sign(guess))
 | |
|             {
 | |
|                guess = static_cast<T>(s);
 | |
|             }
 | |
| 
 | |
|             value_type result = detail::generic_quantile(
 | |
|                non_central_t_distribution<value_type, forwarding_policy>(v, delta), 
 | |
|                (p < q ? p : q), 
 | |
|                guess, 
 | |
|                (p >= q), 
 | |
|                function);
 | |
|             return policies::checked_narrowing_cast<T, forwarding_policy>(
 | |
|                result, 
 | |
|                function);
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t2_pdf(T n, T delta, T x, T y, const Policy& pol, T init_val)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             //
 | |
|             // Variables come first:
 | |
|             //
 | |
|             boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
 | |
|             T errtol = boost::math::policies::get_epsilon<T, Policy>();
 | |
|             T d2 = delta * delta / 2;
 | |
|             //
 | |
|             // k is the starting point for iteration, and is the
 | |
|             // maximum of the poisson weighting term:
 | |
|             //
 | |
|             int k = itrunc(d2);
 | |
|             T pois, xterm;
 | |
|             if(k == 0)
 | |
|                k = 1;
 | |
|             // Starting Poisson weight:
 | |
|             pois = gamma_p_derivative(T(k+1), d2, pol) 
 | |
|                * tgamma_delta_ratio(T(k + 1), T(0.5f))
 | |
|                * delta / constants::root_two<T>();
 | |
|             // Starting beta term:
 | |
|             xterm = x < y
 | |
|                ? ibeta_derivative(T(k + 1), n / 2, x, pol)
 | |
|                : ibeta_derivative(n / 2, T(k + 1), y, pol);
 | |
|             T poisf(pois), xtermf(xterm);
 | |
|             T sum = init_val;
 | |
|             if((pois == 0) || (xterm == 0))
 | |
|                return init_val;
 | |
| 
 | |
|             //
 | |
|             // Backwards recursion first, this is the stable
 | |
|             // direction for recursion:
 | |
|             //
 | |
|             boost::uintmax_t count = 0;
 | |
|             for(int i = k; i >= 0; --i)
 | |
|             {
 | |
|                T term = xterm * pois;
 | |
|                sum += term;
 | |
|                if(((fabs(term/sum) < errtol) && (i != k)) || (term == 0))
 | |
|                   break;
 | |
|                pois *= (i + 0.5f) / d2;
 | |
|                xterm *= (i) / (x * (n / 2 + i));
 | |
|                ++count;
 | |
|                if(count > max_iter)
 | |
|                {
 | |
|                   return policies::raise_evaluation_error(
 | |
|                      "pdf(non_central_t_distribution<%1%>, %1%)", 
 | |
|                      "Series did not converge, closest value was %1%", sum, pol);
 | |
|                }
 | |
|             }
 | |
|             for(int i = k + 1; ; ++i)
 | |
|             {
 | |
|                poisf *= d2 / (i + 0.5f);
 | |
|                xtermf *= (x * (n / 2 + i)) / (i);
 | |
|                T term = poisf * xtermf;
 | |
|                sum += term;
 | |
|                if((fabs(term/sum) < errtol) || (term == 0))
 | |
|                   break;
 | |
|                ++count;
 | |
|                if(count > max_iter)
 | |
|                {
 | |
|                   return policies::raise_evaluation_error(
 | |
|                      "pdf(non_central_t_distribution<%1%>, %1%)", 
 | |
|                      "Series did not converge, closest value was %1%", sum, pol);
 | |
|                }
 | |
|             }
 | |
|             return sum;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T non_central_t_pdf(T n, T delta, T t, const Policy& pol)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             if ((boost::math::isinf)(n))
 | |
|             { // Infinite degrees of freedom, so use normal distribution located at delta.
 | |
|                normal_distribution<T, Policy> norm(delta, 1); 
 | |
|                return pdf(norm, t);
 | |
|             }
 | |
|             //
 | |
|             // Otherwise, for t < 0 we have to use the reflection formula:
 | |
|             if(t < 0)
 | |
|             {
 | |
|                t = -t;
 | |
|                delta = -delta;
 | |
|             }
 | |
|             if(t == 0)
 | |
|             {
 | |
|                //
 | |
|                // Handle this as a special case, using the formula
 | |
|                // from Weisstein, Eric W. 
 | |
|                // "Noncentral Student's t-Distribution." 
 | |
|                // From MathWorld--A Wolfram Web Resource. 
 | |
|                // http://mathworld.wolfram.com/NoncentralStudentst-Distribution.html 
 | |
|                // 
 | |
|                // The formula is simplified thanks to the relation
 | |
|                // 1F1(a,b,0) = 1.
 | |
|                //
 | |
|                return tgamma_delta_ratio(n / 2 + 0.5f, T(0.5f))
 | |
|                   * sqrt(n / constants::pi<T>()) 
 | |
|                   * exp(-delta * delta / 2) / 2;
 | |
|             }
 | |
|             if(fabs(delta / (4 * n)) < policies::get_epsilon<T, Policy>())
 | |
|             {
 | |
|                // Approximate with a Student's T centred on delta,
 | |
|                // the crossover point is based on eq 2.6 from
 | |
|                // "A Comparison of Approximations To Percentiles of the
 | |
|                // Noncentral t-Distribution".  H. Sahai and M. M. Ojeda,
 | |
|                // Revista Investigacion Operacional Vol 21, No 2, 2000.
 | |
|                // Original sources referenced in the above are:
 | |
|                // "Some Approximations to the Percentage Points of the Noncentral
 | |
|                // t-Distribution". C. van Eeden. International Statistical Review, 29, 4-31.
 | |
|                // "Continuous Univariate Distributions".  N.L. Johnson, S. Kotz and
 | |
|                // N. Balkrishnan. 1995. John Wiley and Sons New York.
 | |
|                return pdf(students_t_distribution<T, Policy>(n), t - delta);
 | |
|             }
 | |
|             //
 | |
|             // x and y are the corresponding random
 | |
|             // variables for the noncentral beta distribution,
 | |
|             // with y = 1 - x:
 | |
|             //
 | |
|             T x = t * t / (n + t * t);
 | |
|             T y = n / (n + t * t);
 | |
|             T a = 0.5f;
 | |
|             T b = n / 2;
 | |
|             T d2 = delta * delta;
 | |
|             //
 | |
|             // Calculate pdf:
 | |
|             //
 | |
|             T dt = n * t / (n * n + 2 * n * t * t + t * t * t * t);
 | |
|             T result = non_central_beta_pdf(a, b, d2, x, y, pol);
 | |
|             T tol = tools::epsilon<T>() * result * 500;
 | |
|             result = non_central_t2_pdf(n, delta, x, y, pol, result);
 | |
|             if(result <= tol)
 | |
|                result = 0;
 | |
|             result *= dt;
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T mean(T v, T delta, const Policy& pol)
 | |
|          {
 | |
|             if ((boost::math::isinf)(v))
 | |
|             {
 | |
|                return delta;
 | |
|             }
 | |
|             BOOST_MATH_STD_USING
 | |
|             if (v > 1 / boost::math::tools::epsilon<T>() )
 | |
|             {
 | |
|               //normal_distribution<T, Policy> n(delta, 1);
 | |
|               //return boost::math::mean(n); 
 | |
|               return delta;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|              return delta * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, T(0.5f), pol);
 | |
|             }
 | |
|             // Other moments use mean so using normal distribution is propagated.
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T variance(T v, T delta, const Policy& pol)
 | |
|          {
 | |
|             if ((boost::math::isinf)(v))
 | |
|             {
 | |
|                return 1;
 | |
|             }
 | |
|             if (delta == 0)
 | |
|             {  // == Student's t
 | |
|               return v / (v - 2);
 | |
|             }
 | |
|             T result = ((delta * delta + 1) * v) / (v - 2);
 | |
|             T m = mean(v, delta, pol);
 | |
|             result -= m * m;
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T skewness(T v, T delta, const Policy& pol)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             if ((boost::math::isinf)(v))
 | |
|             {
 | |
|                return 0;
 | |
|             }
 | |
|             if(delta == 0)
 | |
|             { // == Student's t
 | |
|               return 0;
 | |
|             }
 | |
|             T mean = boost::math::detail::mean(v, delta, pol);
 | |
|             T l2 = delta * delta;
 | |
|             T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
 | |
|             T result = -2 * var;
 | |
|             result += v * (l2 + 2 * v - 3) / ((v - 3) * (v - 2));
 | |
|             result *= mean;
 | |
|             result /= pow(var, T(1.5f));
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class T, class Policy>
 | |
|          T kurtosis_excess(T v, T delta, const Policy& pol)
 | |
|          {
 | |
|             BOOST_MATH_STD_USING
 | |
|             if ((boost::math::isinf)(v))
 | |
|             {
 | |
|                return 3;
 | |
|             }
 | |
|             if (delta == 0)
 | |
|             { // == Student's t
 | |
|               return 3;
 | |
|             }
 | |
|             T mean = boost::math::detail::mean(v, delta, pol);
 | |
|             T l2 = delta * delta;
 | |
|             T var = ((l2 + 1) * v) / (v - 2) - mean * mean;
 | |
|             T result = -3 * var;
 | |
|             result += v * (l2 * (v + 1) + 3 * (3 * v - 5)) / ((v - 3) * (v - 2));
 | |
|             result *= -mean * mean;
 | |
|             result += v * v * (l2 * l2 + 6 * l2 + 3) / ((v - 4) * (v - 2));
 | |
|             result /= var * var;
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
| #if 0
 | |
|          // 
 | |
|          // This code is disabled, since there can be multiple answers to the
 | |
|          // question, and it's not clear how to find the "right" one.
 | |
|          //
 | |
|          template <class RealType, class Policy>
 | |
|          struct t_degrees_of_freedom_finder
 | |
|          {
 | |
|             t_degrees_of_freedom_finder(
 | |
|                RealType delta_, RealType x_, RealType p_, bool c)
 | |
|                : delta(delta_), x(x_), p(p_), comp(c) {}
 | |
| 
 | |
|             RealType operator()(const RealType& v)
 | |
|             {
 | |
|                non_central_t_distribution<RealType, Policy> d(v, delta);
 | |
|                return comp ?
 | |
|                   p - cdf(complement(d, x))
 | |
|                   : cdf(d, x) - p;
 | |
|             }
 | |
|          private:
 | |
|             RealType delta;
 | |
|             RealType x;
 | |
|             RealType p;
 | |
|             bool comp;
 | |
|          };
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          inline RealType find_t_degrees_of_freedom(
 | |
|             RealType delta, RealType x, RealType p, RealType q, const Policy& pol)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
 | |
|             if((p == 0) || (q == 0))
 | |
|             {
 | |
|                //
 | |
|                // Can't a thing if one of p and q is zero:
 | |
|                //
 | |
|                return policies::raise_evaluation_error<RealType>(function, 
 | |
|                   "Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%", 
 | |
|                   RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
 | |
|             }
 | |
|             t_degrees_of_freedom_finder<RealType, Policy> f(delta, x, p < q ? p : q, p < q ? false : true);
 | |
|             tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
 | |
|             boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|             //
 | |
|             // Pick an initial guess:
 | |
|             //
 | |
|             RealType guess = 200;
 | |
|             std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
 | |
|                f, guess, RealType(2), false, tol, max_iter, pol);
 | |
|             RealType result = ir.first + (ir.second - ir.first) / 2;
 | |
|             if(max_iter >= policies::get_max_root_iterations<Policy>())
 | |
|             {
 | |
|                return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
 | |
|                   " or there is no answer to problem.  Current best guess is %1%", result, Policy());
 | |
|             }
 | |
|             return result;
 | |
|          }
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          struct t_non_centrality_finder
 | |
|          {
 | |
|             t_non_centrality_finder(
 | |
|                RealType v_, RealType x_, RealType p_, bool c)
 | |
|                : v(v_), x(x_), p(p_), comp(c) {}
 | |
| 
 | |
|             RealType operator()(const RealType& delta)
 | |
|             {
 | |
|                non_central_t_distribution<RealType, Policy> d(v, delta);
 | |
|                return comp ?
 | |
|                   p - cdf(complement(d, x))
 | |
|                   : cdf(d, x) - p;
 | |
|             }
 | |
|          private:
 | |
|             RealType v;
 | |
|             RealType x;
 | |
|             RealType p;
 | |
|             bool comp;
 | |
|          };
 | |
| 
 | |
|          template <class RealType, class Policy>
 | |
|          inline RealType find_t_non_centrality(
 | |
|             RealType v, RealType x, RealType p, RealType q, const Policy& pol)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_t_non_centrality";
 | |
|             if((p == 0) || (q == 0))
 | |
|             {
 | |
|                //
 | |
|                // Can't do a thing if one of p and q is zero:
 | |
|                //
 | |
|                return policies::raise_evaluation_error<RealType>(function, 
 | |
|                   "Can't find non-centrality parameter when the probability is 0 or 1, only possible answer is %1%", 
 | |
|                   RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
 | |
|             }
 | |
|             t_non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
 | |
|             tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
 | |
|             boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
 | |
|             //
 | |
|             // Pick an initial guess that we know is the right side of
 | |
|             // zero:
 | |
|             //
 | |
|             RealType guess;
 | |
|             if(f(0) < 0)
 | |
|                guess = 1;
 | |
|             else
 | |
|                guess = -1;
 | |
|             std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
 | |
|                f, guess, RealType(2), false, tol, max_iter, pol);
 | |
|             RealType result = ir.first + (ir.second - ir.first) / 2;
 | |
|             if(max_iter >= policies::get_max_root_iterations<Policy>())
 | |
|             {
 | |
|                return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
 | |
|                   " or there is no answer to problem.  Current best guess is %1%", result, Policy());
 | |
|             }
 | |
|             return result;
 | |
|          }
 | |
| #endif
 | |
|       } // namespace detail ======================================================================
 | |
| 
 | |
|       template <class RealType = double, class Policy = policies::policy<> >
 | |
|       class non_central_t_distribution
 | |
|       {
 | |
|       public:
 | |
|          typedef RealType value_type;
 | |
|          typedef Policy policy_type;
 | |
| 
 | |
|          non_central_t_distribution(RealType v_, RealType lambda) : v(v_), ncp(lambda)
 | |
|          { 
 | |
|             const char* function = "boost::math::non_central_t_distribution<%1%>::non_central_t_distribution(%1%,%1%)";
 | |
|             RealType r;
 | |
|             detail::check_df_gt0_to_inf(
 | |
|                function,
 | |
|                v, &r, Policy());
 | |
|             detail::check_finite(
 | |
|                function,
 | |
|                lambda,
 | |
|                &r,
 | |
|                Policy());
 | |
|          } // non_central_t_distribution constructor.
 | |
| 
 | |
|          RealType degrees_of_freedom() const
 | |
|          { // Private data getter function.
 | |
|             return v;
 | |
|          }
 | |
|          RealType non_centrality() const
 | |
|          { // Private data getter function.
 | |
|             return ncp;
 | |
|          }
 | |
| #if 0
 | |
|          // 
 | |
|          // This code is disabled, since there can be multiple answers to the
 | |
|          // question, and it's not clear how to find the "right" one.
 | |
|          //
 | |
|          static RealType find_degrees_of_freedom(RealType delta, RealType x, RealType p)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy, 
 | |
|                policies::promote_float<false>, 
 | |
|                policies::promote_double<false>, 
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             value_type result = detail::find_t_degrees_of_freedom(
 | |
|                static_cast<value_type>(delta), 
 | |
|                static_cast<value_type>(x), 
 | |
|                static_cast<value_type>(p), 
 | |
|                static_cast<value_type>(1-p), 
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result, 
 | |
|                function);
 | |
|          }
 | |
|          template <class A, class B, class C>
 | |
|          static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_degrees_of_freedom";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy, 
 | |
|                policies::promote_float<false>, 
 | |
|                policies::promote_double<false>, 
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             value_type result = detail::find_t_degrees_of_freedom(
 | |
|                static_cast<value_type>(c.dist), 
 | |
|                static_cast<value_type>(c.param1), 
 | |
|                static_cast<value_type>(1-c.param2), 
 | |
|                static_cast<value_type>(c.param2), 
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result, 
 | |
|                function);
 | |
|          }
 | |
|          static RealType find_non_centrality(RealType v, RealType x, RealType p)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_t_non_centrality";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy, 
 | |
|                policies::promote_float<false>, 
 | |
|                policies::promote_double<false>, 
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             value_type result = detail::find_t_non_centrality(
 | |
|                static_cast<value_type>(v), 
 | |
|                static_cast<value_type>(x), 
 | |
|                static_cast<value_type>(p), 
 | |
|                static_cast<value_type>(1-p), 
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result, 
 | |
|                function);
 | |
|          }
 | |
|          template <class A, class B, class C>
 | |
|          static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
 | |
|          {
 | |
|             const char* function = "non_central_t<%1%>::find_t_non_centrality";
 | |
|             typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|             typedef typename policies::normalise<
 | |
|                Policy, 
 | |
|                policies::promote_float<false>, 
 | |
|                policies::promote_double<false>, 
 | |
|                policies::discrete_quantile<>,
 | |
|                policies::assert_undefined<> >::type forwarding_policy;
 | |
|             value_type result = detail::find_t_non_centrality(
 | |
|                static_cast<value_type>(c.dist), 
 | |
|                static_cast<value_type>(c.param1), 
 | |
|                static_cast<value_type>(1-c.param2), 
 | |
|                static_cast<value_type>(c.param2), 
 | |
|                forwarding_policy());
 | |
|             return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|                result, 
 | |
|                function);
 | |
|          }
 | |
| #endif
 | |
|       private:
 | |
|          // Data member, initialized by constructor.
 | |
|          RealType v;   // degrees of freedom
 | |
|          RealType ncp; // non-centrality parameter
 | |
|       }; // template <class RealType, class Policy> class non_central_t_distribution
 | |
| 
 | |
|       typedef non_central_t_distribution<double> non_central_t; // Reserved name of type double.
 | |
| 
 | |
|       // Non-member functions to give properties of the distribution.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline const std::pair<RealType, RealType> range(const non_central_t_distribution<RealType, Policy>& /* dist */)
 | |
|       { // Range of permissible values for random variable k.
 | |
|          using boost::math::tools::max_value;
 | |
|          return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline const std::pair<RealType, RealType> support(const non_central_t_distribution<RealType, Policy>& /* dist */)
 | |
|       { // Range of supported values for random variable k.
 | |
|          // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
 | |
|          using boost::math::tools::max_value;
 | |
|          return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>());
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType mode(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       { // mode.
 | |
|          static const char* function = "mode(non_central_t_distribution<%1%> const&)";
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
| 
 | |
|          BOOST_MATH_STD_USING
 | |
| 
 | |
|          RealType m = v < 3 ? 0 : detail::mean(v, l, Policy());
 | |
|          RealType var = v < 4 ? 1 : detail::variance(v, l, Policy());
 | |
| 
 | |
|          return detail::generic_find_mode(
 | |
|             dist, 
 | |
|             m,
 | |
|             function,
 | |
|             sqrt(var));
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType mean(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       { 
 | |
|          BOOST_MATH_STD_USING
 | |
|          const char* function = "mean(const non_central_t_distribution<%1%>&)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          if(v <= 1)
 | |
|             return policies::raise_domain_error<RealType>(
 | |
|                function, 
 | |
|                "The non-central t distribution has no defined mean for degrees of freedom <= 1: got v=%1%.", v, Policy());
 | |
|          // return l * sqrt(v / 2) * tgamma_delta_ratio((v - 1) * 0.5f, RealType(0.5f));
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::mean(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
 | |
| 
 | |
|       } // mean
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType variance(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       { // variance.
 | |
|          const char* function = "variance(const non_central_t_distribution<%1%>&)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
|          BOOST_MATH_STD_USING
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          if(v <= 2)
 | |
|             return policies::raise_domain_error<RealType>(
 | |
|                function, 
 | |
|                "The non-central t distribution has no defined variance for degrees of freedom <= 2: got v=%1%.", v, Policy());
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::variance(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
 | |
|       }
 | |
| 
 | |
|       // RealType standard_deviation(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       // standard_deviation provided by derived accessors.
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType skewness(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       { // skewness = sqrt(l).
 | |
|          const char* function = "skewness(const non_central_t_distribution<%1%>&)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          if(v <= 3)
 | |
|             return policies::raise_domain_error<RealType>(
 | |
|                function, 
 | |
|                "The non-central t distribution has no defined skewness for degrees of freedom <= 3: got v=%1%.", v, Policy());;
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::skewness(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType kurtosis_excess(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       { 
 | |
|          const char* function = "kurtosis_excess(const non_central_t_distribution<%1%>&)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          if(v <= 4)
 | |
|             return policies::raise_domain_error<RealType>(
 | |
|                function, 
 | |
|                "The non-central t distribution has no defined kurtosis for degrees of freedom <= 4: got v=%1%.", v, Policy());;
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::kurtosis_excess(static_cast<value_type>(v), static_cast<value_type>(l), forwarding_policy()), function);
 | |
|       } // kurtosis_excess
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType kurtosis(const non_central_t_distribution<RealType, Policy>& dist)
 | |
|       {
 | |
|          return kurtosis_excess(dist) + 3;
 | |
|       }
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType pdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& t)
 | |
|       { // Probability Density/Mass Function.
 | |
|          const char* function = "pdf(non_central_t_distribution<%1%>, %1%)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy())
 | |
|             ||
 | |
|          !detail::check_x(
 | |
|             function,
 | |
|             t,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::non_central_t_pdf(static_cast<value_type>(v), 
 | |
|                static_cast<value_type>(l), 
 | |
|                static_cast<value_type>(t), 
 | |
|                Policy()),
 | |
|             function);
 | |
|       } // pdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       RealType cdf(const non_central_t_distribution<RealType, Policy>& dist, const RealType& x)
 | |
|       { 
 | |
|          const char* function = "boost::math::cdf(non_central_t_distribution<%1%>&, %1%)";
 | |
| //   was const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy())
 | |
|             ||
 | |
|          !detail::check_x(
 | |
|             function,
 | |
|             x,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
|           if ((boost::math::isinf)(v))
 | |
|           { // Infinite degrees of freedom, so use normal distribution located at delta.
 | |
|              normal_distribution<RealType, Policy> n(l, 1); 
 | |
|              cdf(n, x);
 | |
|               //return cdf(normal_distribution<RealType, Policy>(l, 1), x);
 | |
|           }
 | |
| 
 | |
|          if(l == 0)
 | |
|          { // NO non-centrality, so use Student's t instead.
 | |
|             return cdf(students_t_distribution<RealType, Policy>(v), x);
 | |
|          }
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::non_central_t_cdf(
 | |
|                static_cast<value_type>(v), 
 | |
|                static_cast<value_type>(l), 
 | |
|                static_cast<value_type>(x), 
 | |
|                false, Policy()),
 | |
|             function);
 | |
|       } // cdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       RealType cdf(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
 | |
|       { // Complemented Cumulative Distribution Function
 | |
|   // was       const char* function = "boost::math::non_central_t_distribution<%1%>::cdf(%1%)";
 | |
|          const char* function = "boost::math::cdf(const complement(non_central_t_distribution<%1%>&), %1%)";
 | |
|          typedef typename policies::evaluation<RealType, Policy>::type value_type;
 | |
|          typedef typename policies::normalise<
 | |
|             Policy, 
 | |
|             policies::promote_float<false>, 
 | |
|             policies::promote_double<false>, 
 | |
|             policies::discrete_quantile<>,
 | |
|             policies::assert_undefined<> >::type forwarding_policy;
 | |
| 
 | |
|          non_central_t_distribution<RealType, Policy> const& dist = c.dist;
 | |
|          RealType x = c.param;
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality(); // aka delta
 | |
|          RealType r;
 | |
|          if(!detail::check_df_gt0_to_inf(
 | |
|             function,
 | |
|             v, &r, Policy())
 | |
|             ||
 | |
|          !detail::check_finite(
 | |
|             function,
 | |
|             l,
 | |
|             &r,
 | |
|             Policy())
 | |
|             ||
 | |
|          !detail::check_x(
 | |
|             function,
 | |
|             x,
 | |
|             &r,
 | |
|             Policy()))
 | |
|                return (RealType)r;
 | |
| 
 | |
|          if ((boost::math::isinf)(v))
 | |
|          { // Infinite degrees of freedom, so use normal distribution located at delta.
 | |
|              normal_distribution<RealType, Policy> n(l, 1); 
 | |
|              return cdf(complement(n, x));
 | |
|          }
 | |
|          if(l == 0)
 | |
|          { // zero non-centrality so use Student's t distribution.
 | |
|             return cdf(complement(students_t_distribution<RealType, Policy>(v), x));
 | |
|          }
 | |
|          return policies::checked_narrowing_cast<RealType, forwarding_policy>(
 | |
|             detail::non_central_t_cdf(
 | |
|                static_cast<value_type>(v), 
 | |
|                static_cast<value_type>(l), 
 | |
|                static_cast<value_type>(x), 
 | |
|                true, Policy()),
 | |
|             function);
 | |
|       } // ccdf
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType quantile(const non_central_t_distribution<RealType, Policy>& dist, const RealType& p)
 | |
|       { // Quantile (or Percent Point) function.
 | |
|          static const char* function = "quantile(const non_central_t_distribution<%1%>, %1%)";
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          return detail::non_central_t_quantile(function, v, l, p, RealType(1-p), Policy());
 | |
|       } // quantile
 | |
| 
 | |
|       template <class RealType, class Policy>
 | |
|       inline RealType quantile(const complemented2_type<non_central_t_distribution<RealType, Policy>, RealType>& c)
 | |
|       { // Quantile (or Percent Point) function.
 | |
|          static const char* function = "quantile(const complement(non_central_t_distribution<%1%>, %1%))";
 | |
|          non_central_t_distribution<RealType, Policy> const& dist = c.dist;
 | |
|          RealType q = c.param;
 | |
|          RealType v = dist.degrees_of_freedom();
 | |
|          RealType l = dist.non_centrality();
 | |
|          return detail::non_central_t_quantile(function, v, l, RealType(1-q), q, Policy());
 | |
|       } // quantile complement.
 | |
| 
 | |
|    } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| // This include must be at the end, *after* the accessors
 | |
| // for this distribution have been defined, in order to
 | |
| // keep compilers that support two-phase lookup happy.
 | |
| #include <boost/math/distributions/detail/derived_accessors.hpp>
 | |
| 
 | |
| #endif // BOOST_MATH_SPECIAL_NON_CENTRAL_T_HPP
 | |
| 
 | 
