326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| // Boost Lambda Library  ret.hpp -----------------------------------------
 | |
| 
 | |
| // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
 | |
| //
 | |
| // Distributed under the Boost Software License, Version 1.0. (See
 | |
| // accompanying file LICENSE_1_0.txt or copy at
 | |
| // http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| // For more information, see www.boost.org
 | |
| 
 | |
| 
 | |
| #ifndef BOOST_LAMBDA_RET_HPP
 | |
| #define BOOST_LAMBDA_RET_HPP
 | |
| 
 | |
| namespace boost { 
 | |
| namespace lambda {
 | |
| 
 | |
|   // TODO:
 | |
| 
 | |
| //  Add specializations for function references for ret, protect and unlambda
 | |
| //  e.g void foo(); unlambda(foo); fails, as it would add a const qualifier
 | |
|   // for a function type. 
 | |
|   // on the other hand unlambda(*foo) does work
 | |
| 
 | |
| 
 | |
| // -- ret -------------------------
 | |
| // the explicit return type template 
 | |
| 
 | |
|   // TODO: It'd be nice to make ret a nop for other than lambda functors
 | |
|   // but causes an ambiguiyty with gcc (not with KCC), check what is the
 | |
|   // right interpretation.
 | |
| 
 | |
|   //  // ret for others than lambda functors has no effect
 | |
|   // template <class U, class T>
 | |
|   // inline const T& ret(const T& t) { return t; }
 | |
| 
 | |
| 
 | |
| template<class RET, class Arg>
 | |
| inline const 
 | |
| lambda_functor<
 | |
|   lambda_functor_base<
 | |
|     explicit_return_type_action<RET>, 
 | |
|     tuple<lambda_functor<Arg> >
 | |
|   > 
 | |
| >
 | |
| ret(const lambda_functor<Arg>& a1)
 | |
| {
 | |
|   return  
 | |
|     lambda_functor_base<
 | |
|       explicit_return_type_action<RET>, 
 | |
|       tuple<lambda_functor<Arg> >
 | |
|     > 
 | |
|     (tuple<lambda_functor<Arg> >(a1));
 | |
| }
 | |
| 
 | |
| // protect ------------------
 | |
| 
 | |
|   // protecting others than lambda functors has no effect
 | |
| template <class T>
 | |
| inline const T& protect(const T& t) { return t; }
 | |
| 
 | |
| template<class Arg>
 | |
| inline const 
 | |
| lambda_functor<
 | |
|   lambda_functor_base<
 | |
|     protect_action, 
 | |
|     tuple<lambda_functor<Arg> >
 | |
|   > 
 | |
| >
 | |
| protect(const lambda_functor<Arg>& a1)
 | |
| {
 | |
|   return 
 | |
|       lambda_functor_base<
 | |
|         protect_action, 
 | |
|         tuple<lambda_functor<Arg> >
 | |
|       > 
 | |
|     (tuple<lambda_functor<Arg> >(a1));
 | |
| }
 | |
|    
 | |
| // -------------------------------------------------------------------
 | |
| 
 | |
| // Hides the lambda functorness of a lambda functor. 
 | |
| // After this, the functor is immune to argument substitution, etc.
 | |
| // This can be used, e.g. to make it safe to pass lambda functors as 
 | |
| // arguments to functions, which might use them as target functions
 | |
| 
 | |
| // note, unlambda and protect are different things. Protect hides the lambda
 | |
| // functor for one application, unlambda for good.
 | |
| 
 | |
| template <class LambdaFunctor>
 | |
| class non_lambda_functor
 | |
| {
 | |
|   LambdaFunctor lf;
 | |
| public:
 | |
|   
 | |
|   // This functor defines the result_type typedef.
 | |
|   // The result type must be deducible without knowing the arguments
 | |
| 
 | |
|   template <class SigArgs> struct sig {
 | |
|     typedef typename 
 | |
|       LambdaFunctor::inherited:: 
 | |
|         template sig<typename SigArgs::tail_type>::type type;
 | |
|   };
 | |
| 
 | |
|   explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {}
 | |
| 
 | |
|   typename LambdaFunctor::nullary_return_type  
 | |
|   operator()() const {
 | |
|     return lf.template 
 | |
|       call<typename LambdaFunctor::nullary_return_type>
 | |
|         (cnull_type(), cnull_type(), cnull_type(), cnull_type()); 
 | |
|   }
 | |
| 
 | |
|   template<class A>
 | |
|   typename sig<tuple<const non_lambda_functor, A&> >::type 
 | |
|   operator()(A& a) const {
 | |
|     return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); 
 | |
|   }
 | |
| 
 | |
|   template<class A, class B>
 | |
|   typename sig<tuple<const non_lambda_functor, A&, B&> >::type 
 | |
|   operator()(A& a, B& b) const {
 | |
|     return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); 
 | |
|   }
 | |
| 
 | |
|   template<class A, class B, class C>
 | |
|   typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type 
 | |
|   operator()(A& a, B& b, C& c) const {
 | |
|     return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); 
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class Arg>
 | |
| inline const Arg& unlambda(const Arg& a) { return a; }
 | |
| 
 | |
| template <class Arg>
 | |
| inline const non_lambda_functor<lambda_functor<Arg> > 
 | |
| unlambda(const lambda_functor<Arg>& a)
 | |
| {
 | |
|   return non_lambda_functor<lambda_functor<Arg> >(a);
 | |
| }
 | |
| 
 | |
|   // Due to a language restriction, lambda functors cannot be made to
 | |
|   // accept non-const rvalue arguments. Usually iterators do not return 
 | |
|   // temporaries, but sometimes they do. That's why a workaround is provided.
 | |
|   // Note, that this potentially breaks const correctness, so be careful!
 | |
| 
 | |
| // any lambda functor can be turned into a const_incorrect_lambda_functor
 | |
| // The operator() takes arguments as consts and then casts constness
 | |
| // away. So this breaks const correctness!!! but is a necessary workaround
 | |
| // in some cases due to language limitations.
 | |
| // Note, that this is not a lambda_functor anymore, so it can not be used
 | |
| // as a sub lambda expression.
 | |
| 
 | |
| template <class LambdaFunctor>
 | |
| struct const_incorrect_lambda_functor {
 | |
|   LambdaFunctor lf;
 | |
| public:
 | |
| 
 | |
|   explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {}
 | |
| 
 | |
|   template <class SigArgs> struct sig {
 | |
|     typedef typename
 | |
|       LambdaFunctor::inherited::template 
 | |
|         sig<typename SigArgs::tail_type>::type type;
 | |
|   };
 | |
| 
 | |
|   // The nullary case is not needed (no arguments, no parameter type problems)
 | |
| 
 | |
|   template<class A>
 | |
|   typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type
 | |
|   operator()(const A& a) const {
 | |
|     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type());
 | |
|   }
 | |
| 
 | |
|   template<class A, class B>
 | |
|   typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type
 | |
|   operator()(const A& a, const B& b) const {
 | |
|     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type());
 | |
|   }
 | |
| 
 | |
|   template<class A, class B, class C>
 | |
|   typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type
 | |
|   operator()(const A& a, const B& b, const C& c) const {
 | |
|     return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type());
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ------------------------------------------------------------------------
 | |
| // any lambda functor can be turned into a const_parameter_lambda_functor
 | |
| // The operator() takes arguments as const.
 | |
| // This is useful if lambda functors are called with non-const rvalues.
 | |
| // Note, that this is not a lambda_functor anymore, so it can not be used
 | |
| // as a sub lambda expression.
 | |
| 
 | |
| template <class LambdaFunctor>
 | |
| struct const_parameter_lambda_functor {
 | |
|   LambdaFunctor lf;
 | |
| public:
 | |
| 
 | |
|   explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {}
 | |
| 
 | |
|   template <class SigArgs> struct sig {
 | |
|     typedef typename
 | |
|       LambdaFunctor::inherited::template 
 | |
|         sig<typename SigArgs::tail_type>::type type;
 | |
|   };
 | |
| 
 | |
|   // The nullary case is not needed: no arguments, no constness problems.
 | |
| 
 | |
|   template<class A>
 | |
|   typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type
 | |
|   operator()(const A& a) const {
 | |
|     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type());
 | |
|   }
 | |
| 
 | |
|   template<class A, class B>
 | |
|   typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type
 | |
|   operator()(const A& a, const B& b) const {
 | |
|     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type());
 | |
|   }
 | |
| 
 | |
|   template<class A, class B, class C>
 | |
|   typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&>
 | |
| >::type
 | |
|   operator()(const A& a, const B& b, const C& c) const {
 | |
|     return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <class Arg>
 | |
| inline const const_incorrect_lambda_functor<lambda_functor<Arg> >
 | |
| break_const(const lambda_functor<Arg>& lf)
 | |
| {
 | |
|   return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class Arg>
 | |
| inline const const_parameter_lambda_functor<lambda_functor<Arg> >
 | |
| const_parameters(const lambda_functor<Arg>& lf)
 | |
| {
 | |
|   return const_parameter_lambda_functor<lambda_functor<Arg> >(lf);
 | |
| }
 | |
| 
 | |
| // make void ------------------------------------------------
 | |
| // make_void( x ) turns a lambda functor x with some return type y into
 | |
| // another lambda functor, which has a void return type
 | |
| // when called, the original return type is discarded
 | |
| 
 | |
| // we use this action. The action class will be called, which means that
 | |
| // the wrapped lambda functor is evaluated, but we just don't do anything
 | |
| // with the result.
 | |
| struct voidifier_action {
 | |
|   template<class Ret, class A> static void apply(A&) {}
 | |
| };
 | |
| 
 | |
| template<class Args> struct return_type_N<voidifier_action, Args> {
 | |
|   typedef void type;
 | |
| };
 | |
| 
 | |
| template<class Arg1>
 | |
| inline const 
 | |
| lambda_functor<
 | |
|   lambda_functor_base<
 | |
|     action<1, voidifier_action>,
 | |
|     tuple<lambda_functor<Arg1> >
 | |
|   > 
 | |
| > 
 | |
| make_void(const lambda_functor<Arg1>& a1) { 
 | |
| return 
 | |
|     lambda_functor_base<
 | |
|       action<1, voidifier_action>,
 | |
|       tuple<lambda_functor<Arg1> >
 | |
|     > 
 | |
|   (tuple<lambda_functor<Arg1> > (a1));
 | |
| }
 | |
| 
 | |
| // for non-lambda functors, make_void does nothing 
 | |
| // (the argument gets evaluated immediately)
 | |
| 
 | |
| template<class Arg1>
 | |
| inline const 
 | |
| lambda_functor<
 | |
|   lambda_functor_base<do_nothing_action, null_type> 
 | |
| > 
 | |
| make_void(const Arg1&) { 
 | |
| return 
 | |
|     lambda_functor_base<do_nothing_action, null_type>();
 | |
| }
 | |
| 
 | |
| // std_functor -----------------------------------------------------
 | |
| 
 | |
| //  The STL uses the result_type typedef as the convention to let binders know
 | |
| //  the return type of a function object. 
 | |
| //  LL uses the sig template.
 | |
| //  To let LL know that the function object has the result_type typedef 
 | |
| //  defined, it can be wrapped with the std_functor function.
 | |
| 
 | |
| 
 | |
| // Just inherit form the template parameter (the standard functor), 
 | |
| // and provide a sig template. So we have a class which is still the
 | |
| // same functor + the sig template.
 | |
| 
 | |
| template<class T>
 | |
| struct result_type_to_sig : public T {
 | |
|   template<class Args> struct sig { typedef typename T::result_type type; };
 | |
|   result_type_to_sig(const T& t) : T(t) {}
 | |
| };
 | |
| 
 | |
| template<class F>
 | |
| inline result_type_to_sig<F> std_functor(const F& f) { return f; }
 | |
| 
 | |
| 
 | |
| } // namespace lambda 
 | |
| } // namespace boost
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | 
