177 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //  Copyright (c) 2006 Xiaogang Zhang
 | |
| //  Copyright (c) 2006 John Maddock
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| //  History:
 | |
| //  XZ wrote the original of this file as part of the Google
 | |
| //  Summer of Code 2006.  JM modified it to fit into the
 | |
| //  Boost.Math conceptual framework better, and to ensure
 | |
| //  that the code continues to work no matter how many digits
 | |
| //  type T has.
 | |
| 
 | |
| #ifndef BOOST_MATH_ELLINT_D_HPP
 | |
| #define BOOST_MATH_ELLINT_D_HPP
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma once
 | |
| #endif
 | |
| 
 | |
| #include <boost/math/special_functions/math_fwd.hpp>
 | |
| #include <boost/math/special_functions/ellint_rf.hpp>
 | |
| #include <boost/math/special_functions/ellint_rd.hpp>
 | |
| #include <boost/math/special_functions/ellint_rg.hpp>
 | |
| #include <boost/math/constants/constants.hpp>
 | |
| #include <boost/math/policies/error_handling.hpp>
 | |
| #include <boost/math/tools/workaround.hpp>
 | |
| #include <boost/math/special_functions/round.hpp>
 | |
| 
 | |
| // Elliptic integrals (complete and incomplete) of the second kind
 | |
| // Carlson, Numerische Mathematik, vol 33, 1 (1979)
 | |
| 
 | |
| namespace boost { namespace math { 
 | |
|    
 | |
| template <class T1, class T2, class Policy>
 | |
| typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const Policy& pol);
 | |
|    
 | |
| namespace detail{
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| T ellint_d_imp(T k, const Policy& pol);
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the second kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_d_imp(T phi, T k, const Policy& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
|     using namespace boost::math::constants;
 | |
| 
 | |
|     bool invert = false;
 | |
|     if(phi < 0)
 | |
|     {
 | |
|        phi = fabs(phi);
 | |
|        invert = true;
 | |
|     }
 | |
| 
 | |
|     T result;
 | |
| 
 | |
|     if(phi >= tools::max_value<T>())
 | |
|     {
 | |
|        // Need to handle infinity as a special case:
 | |
|        result = policies::raise_overflow_error<T>("boost::math::ellint_d<%1%>(%1%,%1%)", 0, pol);
 | |
|     }
 | |
|     else if(phi > 1 / tools::epsilon<T>())
 | |
|     {
 | |
|        // Phi is so large that phi%pi is necessarily zero (or garbage),
 | |
|        // just return the second part of the duplication formula:
 | |
|        result = 2 * phi * ellint_d_imp(k, pol) / constants::pi<T>();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|        // Carlson's algorithm works only for |phi| <= pi/2,
 | |
|        // use the integrand's periodicity to normalize phi
 | |
|        //
 | |
|        T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
 | |
|        T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
 | |
|        int s = 1;
 | |
|        if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
 | |
|        {
 | |
|           m += 1;
 | |
|           s = -1;
 | |
|           rphi = constants::half_pi<T>() - rphi;
 | |
|        }
 | |
|        T sinp = sin(rphi);
 | |
|        T cosp = cos(rphi);
 | |
|        T c = 1 / (sinp * sinp);
 | |
|        T cm1 = cosp * cosp / (sinp * sinp);  // c - 1
 | |
|        T k2 = k * k;
 | |
|        if(k2 > 1)
 | |
|        {
 | |
|           return policies::raise_domain_error<T>("boost::math::ellint_d<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol);
 | |
|        }
 | |
|        else if(rphi == 0)
 | |
|        {
 | |
|           result = 0;
 | |
|        }
 | |
|        else
 | |
|        {
 | |
|           // http://dlmf.nist.gov/19.25#E10
 | |
|           result = s * ellint_rd_imp(cm1, T(c - k2), c, pol) / 3;
 | |
|        }
 | |
|        if(m != 0)
 | |
|           result += m * ellint_d_imp(k, pol);
 | |
|     }
 | |
|     return invert ? T(-result) : result;
 | |
| }
 | |
| 
 | |
| // Complete elliptic integral (Legendre form) of the second kind
 | |
| template <typename T, typename Policy>
 | |
| T ellint_d_imp(T k, const Policy& pol)
 | |
| {
 | |
|     BOOST_MATH_STD_USING
 | |
|     using namespace boost::math::tools;
 | |
| 
 | |
|     if (abs(k) >= 1)
 | |
|     {
 | |
|        return policies::raise_domain_error<T>("boost::math::ellint_d<%1%>(%1%)",
 | |
|             "Got k = %1%, function requires |k| <= 1", k, pol);
 | |
|     }
 | |
|     if(fabs(k) <= tools::root_epsilon<T>())
 | |
|        return constants::pi<T>() / 4;
 | |
| 
 | |
|     T x = 0;
 | |
|     T t = k * k;
 | |
|     T y = 1 - t;
 | |
|     T z = 1;
 | |
|     T value = ellint_rd_imp(x, y, z, pol) / 3;
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| template <typename T, typename Policy>
 | |
| inline typename tools::promote_args<T>::type ellint_d(T k, const Policy& pol, const mpl::true_&)
 | |
| {
 | |
|    typedef typename tools::promote_args<T>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_d_imp(static_cast<value_type>(k), pol), "boost::math::ellint_d<%1%>(%1%)");
 | |
| }
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the second kind
 | |
| template <class T1, class T2>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const mpl::false_&)
 | |
| {
 | |
|    return boost::math::ellint_d(k, phi, policies::policy<>());
 | |
| }
 | |
| 
 | |
| } // detail
 | |
| 
 | |
| // Complete elliptic integral (Legendre form) of the second kind
 | |
| template <typename T>
 | |
| inline typename tools::promote_args<T>::type ellint_d(T k)
 | |
| {
 | |
|    return ellint_d(k, policies::policy<>());
 | |
| }
 | |
| 
 | |
| // Elliptic integral (Legendre form) of the second kind
 | |
| template <class T1, class T2>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi)
 | |
| {
 | |
|    typedef typename policies::is_policy<T2>::type tag_type;
 | |
|    return detail::ellint_d(k, phi, tag_type());
 | |
| }
 | |
| 
 | |
| template <class T1, class T2, class Policy>
 | |
| inline typename tools::promote_args<T1, T2>::type ellint_d(T1 k, T2 phi, const Policy& pol)
 | |
| {
 | |
|    typedef typename tools::promote_args<T1, T2>::type result_type;
 | |
|    typedef typename policies::evaluation<result_type, Policy>::type value_type;
 | |
|    return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_d_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)");
 | |
| }
 | |
| 
 | |
| }} // namespaces
 | |
| 
 | |
| #endif // BOOST_MATH_ELLINT_D_HPP
 | |
| 
 | 
