72 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| subroutine js8_downsample(dd,newdat,f0,c1)
 | |
| 
 | |
|   ! Downconvert to complex data sampled at 200 Hz ==> 32 samples/symbol
 | |
| 
 | |
|   !include 'js8_params.f90'
 | |
| 
 | |
|   parameter (NDFFT1=NSPS*NDD, NDFFT2=NDFFT1/NDOWN) ! Downconverted FFT Size - 192000/60 = 3200
 | |
|   parameter (NTAPER=1) ! Should we taper the downsample?
 | |
|   
 | |
|   logical newdat,first
 | |
| 
 | |
|   complex c1(0:NDFFT2-1)
 | |
|   complex cx(0:NDFFT1/2)
 | |
|   real dd(NMAX),x(NDFFT1),taper(0:NDD)
 | |
|   equivalence (x,cx)
 | |
|   data first/.true./
 | |
|   save cx,first,taper
 | |
| 
 | |
|   if(first) then
 | |
|      pi=4.0*atan(1.0)
 | |
|      do i=0,NDD
 | |
|        taper(i)=0.5*(1.0+cos(i*pi/NDD))
 | |
|      enddo
 | |
|      first=.false.
 | |
|   endif
 | |
| 
 | |
|   if(newdat) then
 | |
|      if(NWRITELOG.eq.1) then
 | |
|        write(*,*) '<DecodeDebug> newdat', NMAX, NDFFT1
 | |
|        flush(6)
 | |
|      endif
 | |
| 
 | |
|      ! Data in dd have changed, recompute the long FFT
 | |
|      x(1:NMAX)=dd
 | |
|      x(NMAX+1:NDFFT1)=0.                       !Zero-pad the x array
 | |
|      call four2a(cx,NDFFT1,1,-1,0)             !r2c FFT to freq domain
 | |
|      newdat=.false.
 | |
|   endif
 | |
| 
 | |
|   df=12000.0/NDFFT1
 | |
|   baud=12000.0/NSPS
 | |
|   i0=nint(f0/df)
 | |
|   ft=f0+8.5*baud
 | |
|   it=min(nint(ft/df),NDFFT1/2)
 | |
|   fb=f0-1.5*baud
 | |
|   ib=max(1,nint(fb/df))
 | |
|   k=0
 | |
|   c1=0.
 | |
| 
 | |
|   if(NWRITELOG.eq.1) then
 | |
|     write(*,*) '<DecodeDebug> ds', df, baud, i0, ib, it
 | |
|     flush(6)
 | |
|   endif
 | |
| 
 | |
|   do i=ib,it
 | |
|    c1(k)=cx(i)
 | |
|    k=k+1
 | |
|   enddo
 | |
| 
 | |
|   if(NTAPER.eq.1) then
 | |
|     c1(0:NDD)=c1(0:NDD)*taper(NDD:0:-1)
 | |
|     c1(k-1-NDD:k-1)=c1(k-1-NDD:k-1)*taper
 | |
|   endif
 | |
| 
 | |
|   c1=cshift(c1,i0-ib)
 | |
|   call four2a(c1,NDFFT2,1,1,1)            !c2c FFT back to time domain
 | |
|   fac=1.0/sqrt(float(NDFFT1)*NDFFT2)
 | |
|   c1=fac*c1
 | |
| 
 | |
|   return
 | |
| end subroutine js8_downsample
 | 
