js8call/.svn/pristine/0b/0b7a5d71a47f7df3fa71312ab9bb764f5c04e20f.svn-base
2018-02-08 21:28:33 -05:00

187 lines
4.7 KiB
Plaintext

subroutine osd174(llr,apmask,norder,decoded,cw,nhardmin,dmin)
!
! An ordered-statistics decoder for the (174,87) code.
!
include "ldpc_174_87_params.f90"
integer*1 apmask(N),apmaskr(N)
integer*1 gen(K,N)
integer*1 genmrb(K,N),g2(N,K)
integer*1 temp(K),m0(K),me(K),mi(K)
integer indices(N),nxor(N)
integer*1 cw(N),ce(N),c0(N),hdec(N)
integer*1 decoded(K)
integer indx(N)
real llr(N),rx(N),absrx(N)
logical first
data first/.true./
save first,gen
if( first ) then ! fill the generator matrix
gen=0
do i=1,M
do j=1,22
read(g(i)(j:j),"(Z1)") istr
do jj=1, 4
irow=(j-1)*4+jj
if( btest(istr,4-jj) ) gen(irow,i)=1
enddo
enddo
enddo
do irow=1,K
gen(irow,M+irow)=1
enddo
first=.false.
endif
! re-order received vector to place systematic msg bits at the end
rx=llr(colorder+1)
apmaskr=apmask(colorder+1)
! hard decode the received word
hdec=0
where(rx .ge. 0) hdec=1
! use magnitude of received symbols as a measure of reliability.
absrx=abs(rx)
call indexx(absrx,N,indx)
! re-order the columns of the generator matrix in order of decreasing reliability.
do i=1,N
genmrb(1:K,i)=gen(1:K,indx(N+1-i))
indices(i)=indx(N+1-i)
enddo
! do gaussian elimination to create a generator matrix with the most reliable
! received bits in positions 1:K in order of decreasing reliability (more or less).
! reliability will not be strictly decreasing because column re-ordering is needed
! to put the generator matrix in systematic form. the "indices" array tracks
! column permutations caused by reliability sorting and gaussian elimination.
do id=1,K ! diagonal element indices
do icol=id,K+20 ! The 20 is ad hoc - beware
iflag=0
if( genmrb(id,icol) .eq. 1 ) then
iflag=1
if( icol .ne. id ) then ! reorder column
temp(1:K)=genmrb(1:K,id)
genmrb(1:K,id)=genmrb(1:K,icol)
genmrb(1:K,icol)=temp(1:K)
itmp=indices(id)
indices(id)=indices(icol)
indices(icol)=itmp
endif
do ii=1,K
if( ii .ne. id .and. genmrb(ii,id) .eq. 1 ) then
genmrb(ii,1:N)=ieor(genmrb(ii,1:N),genmrb(id,1:N))
endif
enddo
exit
endif
enddo
enddo
g2=transpose(genmrb)
! The hard decisions for the K MRB bits define the order 0 message, m0.
! Encode m0 using the modified generator matrix to find the "order 0" codeword.
! Flip various combinations of bits in m0 and re-encode to generate a list of
! codewords. Test all such codewords against the received word to decide which
! codeword is most likely to be correct.
hdec=hdec(indices) ! hard decisions from received symbols
m0=hdec(1:K) ! zero'th order message
absrx=absrx(indices)
rx=rx(indices)
apmaskr=apmaskr(indices)
s1=sum(absrx(1:K))
s2=sum(absrx(K+1:N))
xlam=7.0 ! larger values reject more error patterns
rho=s1/(s1+xlam*s2)
call mrbencode(m0,c0,g2,N,K)
nxor=ieor(c0,hdec)
nhardmin=sum(nxor)
dmin=sum(nxor*absrx)
thresh=rho*dmin
cw=c0
nt=0
nrejected=0
do iorder=1,norder
mi(1:K-iorder)=0
mi(K-iorder+1:K)=1
iflag=0
do while(iflag .ge. 0 )
if(all(iand(apmaskr(1:K),mi).eq.0)) then ! reject patterns with ap bits
dpat=sum(mi*absrx(1:K))
nt=nt+1
if( dpat .lt. thresh ) then ! reject unlikely error patterns
me=ieor(m0,mi)
call mrbencode(me,ce,g2,N,K)
nxor=ieor(ce,hdec)
dd=sum(nxor*absrx)
if( dd .lt. dmin ) then
dmin=dd
cw=ce
nhardmin=sum(nxor)
thresh=rho*dmin
endif
else
nrejected=nrejected+1
endif
endif
! get the next test error pattern, iflag will go negative
! when the last pattern with weight iorder has been generated
call nextpat(mi,k,iorder,iflag)
enddo
enddo
!write(*,*) 'nhardmin ',nhardmin
!write(*,*) 'total patterns ',nt,' number rejected ',nrejected
! re-order the codeword to place message bits at the end
cw(indices)=cw
hdec(indices)=hdec
decoded=cw(M+1:N)
cw(colorder+1)=cw ! put the codeword back into received-word order
return
end subroutine osd174
subroutine mrbencode(me,codeword,g2,N,K)
integer*1 me(K),codeword(N),g2(N,K)
! fast encoding for low-weight test patterns
codeword=0
do i=1,K
if( me(i) .eq. 1 ) then
codeword=ieor(codeword,g2(1:N,i))
endif
enddo
return
end subroutine mrbencode
subroutine nextpat(mi,k,iorder,iflag)
integer*1 mi(k),ms(k)
! generate the next test error pattern
ind=-1
do i=1,k-1
if( mi(i).eq.0 .and. mi(i+1).eq.1) ind=i
enddo
if( ind .lt. 0 ) then ! no more patterns of this order
iflag=ind
return
endif
ms=0
ms(1:ind-1)=mi(1:ind-1)
ms(ind)=1
ms(ind+1)=0
if( ind+1 .lt. k ) then
nz=iorder-sum(ms)
ms(k-nz+1:k)=1
endif
mi=ms
iflag=ind
return
end subroutine nextpat