js8call/.svn/pristine/72/72a95a7175b4297ade415f4d01f35697bb77527c.svn-base
2018-02-08 21:28:33 -05:00

180 lines
6.0 KiB
Plaintext

/*
[auto_generated]
boost/numeric/odeint/integrate/detail/integrate_times.hpp
[begin_description]
Default integrate times implementation.
[end_description]
Copyright 2011-2015 Mario Mulansky
Copyright 2012 Karsten Ahnert
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_TIMES_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_TIMES_HPP_INCLUDED
#include <stdexcept>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
#include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
#include <boost/numeric/odeint/util/detail/less_with_sign.hpp>
#include <boost/numeric/odeint/integrate/max_step_checker.hpp>
namespace boost {
namespace numeric {
namespace odeint {
namespace detail {
/*
* integrate_times for simple stepper
*/
template<class Stepper, class System, class State, class TimeIterator, class Time, class Observer>
size_t integrate_times(
Stepper stepper , System system , State &start_state ,
TimeIterator start_time , TimeIterator end_time , Time dt ,
Observer observer , stepper_tag
)
{
typedef typename odeint::unwrap_reference< Stepper >::type stepper_type;
typedef typename odeint::unwrap_reference< Observer >::type observer_type;
stepper_type &st = stepper;
observer_type &obs = observer;
typedef typename unit_value_type<Time>::type time_type;
size_t steps = 0;
Time current_dt = dt;
while( true )
{
Time current_time = *start_time++;
obs( start_state , current_time );
if( start_time == end_time )
break;
while( less_with_sign( current_time , static_cast<time_type>(*start_time) , current_dt ) )
{
current_dt = min_abs( dt , *start_time - current_time );
st.do_step( system , start_state , current_time , current_dt );
current_time += current_dt;
steps++;
}
}
return steps;
}
/*
* integrate_times for controlled stepper
*/
template< class Stepper , class System , class State , class TimeIterator , class Time , class Observer >
size_t integrate_times(
Stepper stepper , System system , State &start_state ,
TimeIterator start_time , TimeIterator end_time , Time dt ,
Observer observer , controlled_stepper_tag
)
{
typename odeint::unwrap_reference< Observer >::type &obs = observer;
typename odeint::unwrap_reference< Stepper >::type &st = stepper;
typedef typename unit_value_type<Time>::type time_type;
failed_step_checker fail_checker; // to throw a runtime_error if step size adjustment fails
size_t steps = 0;
while( true )
{
Time current_time = *start_time++;
obs( start_state , current_time );
if( start_time == end_time )
break;
while( less_with_sign( current_time , static_cast<time_type>(*start_time) , dt ) )
{
// adjust stepsize to end up exactly at the observation point
Time current_dt = min_abs( dt , *start_time - current_time );
if( st.try_step( system , start_state , current_time , current_dt ) == success )
{
++steps;
// successful step -> reset the fail counter, see #173
fail_checker.reset();
// continue with the original step size if dt was reduced due to observation
dt = max_abs( dt , current_dt );
}
else
{
fail_checker(); // check for possible overflow of failed steps in step size adjustment
dt = current_dt;
}
}
}
return steps;
}
/*
* integrate_times for dense output stepper
*/
template< class Stepper , class System , class State , class TimeIterator , class Time , class Observer >
size_t integrate_times(
Stepper stepper , System system , State &start_state ,
TimeIterator start_time , TimeIterator end_time , Time dt ,
Observer observer , dense_output_stepper_tag
)
{
typename odeint::unwrap_reference< Observer >::type &obs = observer;
typename odeint::unwrap_reference< Stepper >::type &st = stepper;
typedef typename unit_value_type<Time>::type time_type;
if( start_time == end_time )
return 0;
TimeIterator last_time_iterator = end_time;
--last_time_iterator;
Time last_time_point = static_cast<time_type>(*last_time_iterator);
st.initialize( start_state , *start_time , dt );
obs( start_state , *start_time++ );
size_t count = 0;
while( start_time != end_time )
{
while( ( start_time != end_time ) && less_eq_with_sign( static_cast<time_type>(*start_time) , st.current_time() , st.current_time_step() ) )
{
st.calc_state( *start_time , start_state );
obs( start_state , *start_time );
start_time++;
}
// we have not reached the end, do another real step
if( less_eq_with_sign( st.current_time() + st.current_time_step() ,
last_time_point ,
st.current_time_step() ) )
{
st.do_step( system );
++count;
}
else if( start_time != end_time )
{ // do the last step ending exactly on the end point
st.initialize( st.current_state() , st.current_time() , last_time_point - st.current_time() );
st.do_step( system );
++count;
}
}
return count;
}
} // namespace detail
} // namespace odeint
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_ODEINT_INTEGRATE_DETAIL_INTEGRATE_ADAPTIVE_HPP_INCLUDED