253 lines
7.5 KiB
Plaintext
253 lines
7.5 KiB
Plaintext
// (C) Copyright John Maddock 2005.
|
|
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED
|
|
#define BOOST_MATH_COMPLEX_ASIN_INCLUDED
|
|
|
|
#ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
|
|
# include <boost/math/complex/details.hpp>
|
|
#endif
|
|
#ifndef BOOST_MATH_LOG1P_INCLUDED
|
|
# include <boost/math/special_functions/log1p.hpp>
|
|
#endif
|
|
#include <boost/assert.hpp>
|
|
|
|
#ifdef BOOST_NO_STDC_NAMESPACE
|
|
namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
|
|
#endif
|
|
|
|
namespace boost{ namespace math{
|
|
|
|
template<class T>
|
|
inline std::complex<T> asin(const std::complex<T>& z)
|
|
{
|
|
//
|
|
// This implementation is a transcription of the pseudo-code in:
|
|
//
|
|
// "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."
|
|
// T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
|
|
// ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
|
|
//
|
|
|
|
//
|
|
// These static constants should really be in a maths constants library,
|
|
// note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290:
|
|
//
|
|
static const T one = static_cast<T>(1);
|
|
//static const T two = static_cast<T>(2);
|
|
static const T half = static_cast<T>(0.5L);
|
|
static const T a_crossover = static_cast<T>(10);
|
|
static const T b_crossover = static_cast<T>(0.6417L);
|
|
static const T s_pi = boost::math::constants::pi<T>();
|
|
static const T half_pi = s_pi / 2;
|
|
static const T log_two = boost::math::constants::ln_two<T>();
|
|
static const T quarter_pi = s_pi / 4;
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(push)
|
|
#pragma warning(disable:4127)
|
|
#endif
|
|
//
|
|
// Get real and imaginary parts, discard the signs as we can
|
|
// figure out the sign of the result later:
|
|
//
|
|
T x = std::fabs(z.real());
|
|
T y = std::fabs(z.imag());
|
|
T real, imag; // our results
|
|
|
|
//
|
|
// Begin by handling the special cases for infinities and nan's
|
|
// specified in C99, most of this is handled by the regular logic
|
|
// below, but handling it as a special case prevents overflow/underflow
|
|
// arithmetic which may trip up some machines:
|
|
//
|
|
if((boost::math::isnan)(x))
|
|
{
|
|
if((boost::math::isnan)(y))
|
|
return std::complex<T>(x, x);
|
|
if((boost::math::isinf)(y))
|
|
{
|
|
real = x;
|
|
imag = std::numeric_limits<T>::infinity();
|
|
}
|
|
else
|
|
return std::complex<T>(x, x);
|
|
}
|
|
else if((boost::math::isnan)(y))
|
|
{
|
|
if(x == 0)
|
|
{
|
|
real = 0;
|
|
imag = y;
|
|
}
|
|
else if((boost::math::isinf)(x))
|
|
{
|
|
real = y;
|
|
imag = std::numeric_limits<T>::infinity();
|
|
}
|
|
else
|
|
return std::complex<T>(y, y);
|
|
}
|
|
else if((boost::math::isinf)(x))
|
|
{
|
|
if((boost::math::isinf)(y))
|
|
{
|
|
real = quarter_pi;
|
|
imag = std::numeric_limits<T>::infinity();
|
|
}
|
|
else
|
|
{
|
|
real = half_pi;
|
|
imag = std::numeric_limits<T>::infinity();
|
|
}
|
|
}
|
|
else if((boost::math::isinf)(y))
|
|
{
|
|
real = 0;
|
|
imag = std::numeric_limits<T>::infinity();
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// special case for real numbers:
|
|
//
|
|
if((y == 0) && (x <= one))
|
|
return std::complex<T>(std::asin(z.real()), z.imag());
|
|
//
|
|
// Figure out if our input is within the "safe area" identified by Hull et al.
|
|
// This would be more efficient with portable floating point exception handling;
|
|
// fortunately the quantities M and u identified by Hull et al (figure 3),
|
|
// match with the max and min methods of numeric_limits<T>.
|
|
//
|
|
T safe_max = detail::safe_max(static_cast<T>(8));
|
|
T safe_min = detail::safe_min(static_cast<T>(4));
|
|
|
|
T xp1 = one + x;
|
|
T xm1 = x - one;
|
|
|
|
if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
|
|
{
|
|
T yy = y * y;
|
|
T r = std::sqrt(xp1*xp1 + yy);
|
|
T s = std::sqrt(xm1*xm1 + yy);
|
|
T a = half * (r + s);
|
|
T b = x / a;
|
|
|
|
if(b <= b_crossover)
|
|
{
|
|
real = std::asin(b);
|
|
}
|
|
else
|
|
{
|
|
T apx = a + x;
|
|
if(x <= one)
|
|
{
|
|
real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));
|
|
}
|
|
else
|
|
{
|
|
real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));
|
|
}
|
|
}
|
|
|
|
if(a <= a_crossover)
|
|
{
|
|
T am1;
|
|
if(x < one)
|
|
{
|
|
am1 = half * (yy/(r + xp1) + yy/(s - xm1));
|
|
}
|
|
else
|
|
{
|
|
am1 = half * (yy/(r + xp1) + (s + xm1));
|
|
}
|
|
imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
|
|
}
|
|
else
|
|
{
|
|
imag = std::log(a + std::sqrt(a*a - one));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//
|
|
// This is the Hull et al exception handling code from Fig 3 of their paper:
|
|
//
|
|
if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
|
|
{
|
|
if(x < one)
|
|
{
|
|
real = std::asin(x);
|
|
imag = y / std::sqrt(-xp1*xm1);
|
|
}
|
|
else
|
|
{
|
|
real = half_pi;
|
|
if(((std::numeric_limits<T>::max)() / xp1) > xm1)
|
|
{
|
|
// xp1 * xm1 won't overflow:
|
|
imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
|
|
}
|
|
else
|
|
{
|
|
imag = log_two + std::log(x);
|
|
}
|
|
}
|
|
}
|
|
else if(y <= safe_min)
|
|
{
|
|
// There is an assumption in Hull et al's analysis that
|
|
// if we get here then x == 1. This is true for all "good"
|
|
// machines where :
|
|
//
|
|
// E^2 > 8*sqrt(u); with:
|
|
//
|
|
// E = std::numeric_limits<T>::epsilon()
|
|
// u = (std::numeric_limits<T>::min)()
|
|
//
|
|
// Hull et al provide alternative code for "bad" machines
|
|
// but we have no way to test that here, so for now just assert
|
|
// on the assumption:
|
|
//
|
|
BOOST_ASSERT(x == 1);
|
|
real = half_pi - std::sqrt(y);
|
|
imag = std::sqrt(y);
|
|
}
|
|
else if(std::numeric_limits<T>::epsilon() * y - one >= x)
|
|
{
|
|
real = x/y; // This can underflow!
|
|
imag = log_two + std::log(y);
|
|
}
|
|
else if(x > one)
|
|
{
|
|
real = std::atan(x/y);
|
|
T xoy = x/y;
|
|
imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
|
|
}
|
|
else
|
|
{
|
|
T a = std::sqrt(one + y*y);
|
|
real = x/a; // This can underflow!
|
|
imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Finish off by working out the sign of the result:
|
|
//
|
|
if((boost::math::signbit)(z.real()))
|
|
real = (boost::math::changesign)(real);
|
|
if((boost::math::signbit)(z.imag()))
|
|
imag = (boost::math::changesign)(imag);
|
|
|
|
return std::complex<T>(real, imag);
|
|
#ifdef BOOST_MSVC
|
|
#pragma warning(pop)
|
|
#endif
|
|
}
|
|
|
|
} } // namespaces
|
|
|
|
#endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED
|